福州第一中学2025届数学九年级第一学期开学统考试题【含答案】
展开
这是一份福州第一中学2025届数学九年级第一学期开学统考试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)今年我市某县6月1日到10日的每一天最高气温变化如折线图所示,则这10个最高气温的中位数和众数分别是( )
A.33℃ 33℃B.33℃ 32℃C.34℃ 33℃D.35℃ 33℃
2、(4分)若,则下列式子中错误的是( )
A.B.C.D.
3、(4分)函数y=中自变量x的取值范围是( )
A.x>2B.x≥2C.x≤2D.x≠2
4、(4分)等腰三角形的两条边长分别为3和4,则其周长等于( )
A.10B.11C.10或11D.不确定
5、(4分)函数的自变量的取值范围是( )
A.B.C.D.
6、(4分)如图,丝带重叠的部分一定是( )
A.菱形B.矩形C.正方形D.都有可能
7、(4分)为了解某校八年级900名学生每天做家庭作业所用的时间,随机抽取其中120名学生进行抽样调查下列说法 正确的是( )
A.该校八年级全体学生是总体B.从中抽取的120名学生是个体
C.每个八年级学生是总体的一个样本D.样本容量是120
8、(4分)如图,在中,,,的垂直平分线分别交于点,若,则的长是( )
A.4B.3C.2D.1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、,、、在直线上,点、、在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、,则的值为______用含n的代数式表示,n为正整数.
10、(4分)把抛物线y=2(x﹣1)2+1向左平移1个单位,再向上平移2个单位得到的抛物线解析式_____.
11、(4分)小华用S2={(x1-8)2+(x2-8)2+……+(x10-8)2计算一组数据的方差,那么x1+x2+x3+…+x10=____________.
12、(4分)若直线y=kx+3的图象经过点(2,0),则关于x的不等式kx+3>0的解集是_____.
13、(4分)如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形,点在边上,为等腰直角三角形.
(1)如图1,当,求证;
(2)如图2,当,取的中点,连接,求证:
15、(8分)已知,在平面直角坐标系中,一次函数y=kx-3(k≠0)交x轴于点A,交y轴与点B.
(1)如图1,若k=1,求线段AB的长;
(2)如图2,点C与点A关于y轴对称,作射线BC;
①若k=3,请写出以射线BA和射线BC所组成的图形为函数图像的函数解析式;
② y轴上有一点D(0,3),连接AD、CD,请判断四边形ABCD的形状并证明;若≥9,求k的取值范围
16、(8分)已知:在中,对角线、交于点,过点的直线交于点,交于点.
求证:,.
17、(10分)如图,在中,是边上的高,的平分线交于点,于点,请判断四边形的形状,并证明你的结论.
18、(10分)化简:,再从不等式中选取一个合适的整数代入求值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,△ABC中,E为BC的中点,AD平分∠BAC,BD⊥AD,若AB=10,AC=16,则DE= ___________.
20、(4分)反比例函数y=的图象如图所示,A,P为该图象上的点,且关于原点成中心对称.在△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a-1)x2-x+=0的根的情况是________________.
21、(4分)某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .
22、(4分)若一次函数中,随的增大而减小,则的取值范围是______.
23、(4分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BC=16,CD=6,则AC=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系xOy中,直线过点,直线:与直线交于点B,与x轴交于点C.
(1)求k的值;
(2)横、纵坐标都是整数的点叫做整点.
① 当b=4时,直接写出△OBC内的整点个数;
②若△OBC内的整点个数恰有4个,结合图象,求b的取值范围.
25、(10分)计算:.
26、(12分)在梯形中,,,,,,点E、F分别在边、上,,点P与在直线的两侧,,,射线、与边分别相交于点M、N,设,.
(1)求边的长;
(2)如图,当点P在梯形内部时,求关于x的函数解析式,并写出定义域;
(3)如果的长为2,求梯形的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中33℃出现三次,出现的次数最多,故这组数据的众数为33℃.
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为31℃,32℃,32℃,33℃,33℃,33℃,34℃,34℃,35℃,35℃,∴中位数是按从小到大排列后第5,6个数的平均数,为:33℃.
故选A.
2、C
【解析】
A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.
B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.
C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.
D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.
【详解】
∵x>y,
∴x+2>y+2,
∴选项A不符合题意;
∵x>y,
∴x-2>y-2,
∴选项B不符合题意;
∵x>y,
∴−2xy,
∴,
∴选项D不符合题意,
故选C.
此题考查不等式的性质,解题关键在于掌握其性质.
3、C
【解析】
解:由题意得:4﹣1x≥0,解得:x≤1.故选C.
4、C
【解析】
根据等腰三角形的性质即可判断.
【详解】
∵等腰三角形的两条边长分别为3和4
∴第三边为3或4,
故周长为10或11,故选C
此题主要考查等腰三角形的周长,解题的关键是熟知等腰三角形的性质.
5、A
【解析】
根据反比例函数自变量不为0,即可得解.
【详解】
解:∵ 函数为反比例函数,其自变量不为0,
∴
∴
故答案为A.
此题主要考查反比例函数的性质,熟练掌握,即可解题.
6、A
【解析】
首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.
【详解】
解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,
所以AB∥CD,AD∥BC,AE=AF.
∴四边形ABCD是平行四边形.
∵S▱ABCD=BC•AE=CD•AF.
∴BC=CD,
∴四边形ABCD是菱形.
故选:A.
本题考查了平行四边形的判定和性质以及菱形的判定和性质,利用平行四边形的面积公式得到一组邻边相等是解题关键.
7、D
【解析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:A.该校八年级全体学生每天做家庭作业所用的时间是总体,故A不符合题意;
B.每个学生每天做家庭作业所用的时间是个体,故B不符合题意;
C.从中抽取的120名学生每天做家庭作业所用的时间是一个样本,故C不符合题意;
D.样本容量是120,故D符合题意;
故选:D.
考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
8、C
【解析】
连接BE,根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角的性质求出∠ABE=∠A,然后根据三角形的内角和定理求出∠CBE,再根据30°角所对的直角边等于斜边的一半求出CE.
【详解】
如图,连接BE,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=30°,
在△ABC中,∠CBE=180°-∠A-∠ABE-∠C=180°-30°-30°-90°=30°,
∴CE=BE=×4=2,
故选C.
本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,熟记性质并作出辅助线是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
结合正方形的性质结合直线的解析式可得出:,,,,结合三角形的面积公式即可得出:,,,,根据面积的变化可找出变化规律“为正整数”,依此规律即可得出结论.
【详解】
解:令一次函数中,则,
点的坐标为,.
四边形为正整数均为正方形,
,,,.
令一次函数中,则,
即,
,
.
轴,
.
,,,.
,,,,
为正整数.
故答案为:.
本题考查一次函数图象上点的坐标特征、正方形的性质、三角形的面积公式的知识,解题关键在于找到规律,此题属规律性题目,比较复杂.
10、y=2x2+1.
【解析】
先利用顶点式得到抛物线y=2(x﹣1)2+1顶点坐标为(1,1),再根据点平移的坐标特征得到点(1,1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线的解析式即可.
【详解】
抛物线y=2(x﹣1)2+1顶点坐标为(1,1),点(1,1)先向左平移2个单位,再向上平移1个单位后所得对应点的坐标为(0,1),所以平移后的抛物线的解析式为y=2x2+1.
故答案是:y=2x2+1.
本题考查了抛物线的平移,根据平移规律得到平移后抛物线的顶点坐标为(0,1)是解决问题的关键.
11、1
【解析】
根据S2=[(x1-8)2+(x2-8)2+……+(x10-8)2]可得平均数为8,进而可得答案.
【详解】
解:由S2=[(x1-8)2+(x2-8)2+……+(x10-8)2]知这10个数据的平均数为8,
则x1+x2+x3+…+x10=10×8=1,
故答案为:1.
此题主要考查了方差公式,关键是掌握方差公式:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2].
12、
【解析】
把点(2,0)代入解析式,利用待定系数法求出k的值,然后再解不等式即可.
【详解】
∵直线y=kx+3的图象经过点(2,0),
∴0=2k+3,
解得k=-,
则不等式kx+3>0为-x+3>0,
解得:x
相关试卷
这是一份福建省惠安高级中学2024年九年级数学第一学期开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份福建省福州市福州一中学2024年九年级数学第一学期开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届西双版纳市重点中学数学九年级第一学期开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。