终身会员
搜索
    上传资料 赚现金
    甘肃省2024年九上数学开学调研模拟试题【含答案】
    立即下载
    加入资料篮
    甘肃省2024年九上数学开学调研模拟试题【含答案】01
    甘肃省2024年九上数学开学调研模拟试题【含答案】02
    甘肃省2024年九上数学开学调研模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    甘肃省2024年九上数学开学调研模拟试题【含答案】

    展开
    这是一份甘肃省2024年九上数学开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若代数式有意义,则x的取值是( )
    A.x=2B.x≠2C.x=3D.x≠﹣3
    2、(4分)已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD是平行四边形的有( )组.
    A.4B.5C.6D.7
    3、(4分)一次函数y=3x+b和y=ax-3的图象如图所示,其交点为P(-2,-5),则不等式3x+b>ax-3的解集在数轴上表示正确的是( )
    A.B.
    C.D.
    4、(4分)二次根式中的x的取值范围是( )
    A.x<﹣2B.x≤﹣2C.x>﹣2D.x≥﹣2
    5、(4分)如图,数轴上的点A所表示的数为x,则x2的值为( )
    A.2B.- −10C.D.-2
    6、(4分)如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距( )
    A.4海里B.海里C.3海里D.5海里
    7、(4分)如图,点,,在同一条直线上,正方形,正方形的边长分别为3,4,为线段的中点,则的长为( )
    A.B.C.或D.
    8、(4分)某区为了解5600名初中生的身高情况,抽取了300名学生进行身高测量.在这个问题中,样本是()
    A.300B.300名学生C.300名学生的身高情况D.5600名学生的身高情况
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数相同,射击成绩的方差分别为S甲2=5,S乙2=3.5,则射击成绩比较稳定的是_____(填“甲”或“乙“).
    10、(4分)已知一个多边形的内角和为540°,则这个多边形是______边形.
    11、(4分)如图,点是矩形的对角线上一点,过点作,分别交、于、,连接、.若,.则图中阴影部分的面积为____________.
    12、(4分)王明在计算一道方差题时写下了如下算式:,则其中的____________.
    13、(4分)如图,点D是等边内部一点,,,.则的度数为=________°.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
    探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.
    探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
    如图①,连接边长为2的正三角形三条边的中点,从上往下看:
    边长为1的正三角形,第一层有1个,第二层有3个,共有个;
    边长为2的正三角形一共有1个.
    探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
    如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.
    探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
    (仿照上述方法,写出探究过程)
    结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
    (仿照上述方法,写出探究过程)
    应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.
    15、(8分) “母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?
    16、(8分)如图,在菱形ABCD中,对角线AC与BD相交于O点,AB=5,AC=6,过D点作DE//AC交BC的延长线于E点
    (1)求△BDE的周长
    (2)点P为线段BC上的点,连接PO并延长交AD于点Q,求证:BP=DQ
    17、(10分)如图,、相交于点,且是、的中点,点在四边形外,且,
    求证:边形是矩形.
    18、(10分)如图,已知△ABC中,∠B=90 º,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
    (1)出发2秒后,求PQ的长;
    (2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?
    (3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某种手机每部售价为元,如果每月售价的平均降低率为,那么两个月后,这种手机每部的售价是____________元.(用含,的代数式表示)
    20、(4分)在一个不透明的盒子中装有n个小球,它们除颜色不同外,其余都相同,其中有4个是白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中,大量重复上述实验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是___.
    21、(4分)给出下列3个分式:,它们的最简公分母为__________.
    22、(4分)如果最简二次根式与是同类二次根式,那么a=________.
    23、(4分)若m+n=3,则2m2+4mn+2n2-6的值为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某商店第一次用6000元购进了练习本若干本,第二次又用6000元购进该款练习本,但这次每本进货的价格是第一次进货价格的1.2倍,购进数量比第一次少了1000本.
    (1)问:第一次每本的进货价是多少元?
    (2)若要求这两次购进的练习本按同一价格全部销售完毕后获利不低于4500元,问每本售价至少是多少元?
    25、(10分)在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.
    (1)求甲、乙两队单独完成这项工程各需多少天?
    (2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?
    26、(12分)如图,在△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,点O是EF中点,连结BO井延长到G,且GO=BO,连接EG,FG
    (1)试求四边形EBFG的形状,说明理由;
    (2)求证:BD⊥BG
    (3)当AB=BE=1时,求EF的长,
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    试题解析:由题意得:x+3≠0,
    解得:x≠-3,
    故选D.
    2、C
    【解析】
    分析:根据平行四边形的判定来进行选择.①两组对边分别平行的四边形是平行四边形;②两组对角分别平行的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.
    详解:共有6组可能:①②;①③;①④;①⑤;②⑤;④⑤.
    选择①与②:∵AB∥CD,
    ∴∠BAO=∠DCO,∠ABO=∠CDO,
    在△AOB与△COD中,

    ∴△AOB≌△COD,
    ∴AB=CD,
    ∴四边形ABCD为平行四边形.
    ①与③(根据一组对边平行且相等)
    ①与④:∵∠BAD=∠DCB
    ∴AD∥BC
    又AB∥DC
    根据两组对边分别平行可推出四边形ABCD为平行四边形.
    ①与⑤,根据定义,两组对边分别平行的四边形是平行四边形;
    ②与⑤:∵AD∥BC
    OA=OC
    ∴△AOD≌△COB
    故AD=BC,四边形ABCD为平行四边形.
    ④与⑤:根据两组对边分别平行可推出四边形ABCD为平行四边形.
    共有6种可能.
    故选C.
    点睛:本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.
    3、A
    【解析】
    直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.
    【详解】
    解:∵由函数图象可知,
    当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,
    ∴不等式3x+b>ax-3的解集为:x>-2,
    在数轴上表示为:
    故选:A.
    本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.
    4、D
    【解析】
    根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.
    【详解】
    由题意,得
    2x+4≥0,
    解得x≥-2,
    故选D.
    本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.
    5、A
    【解析】
    直接利用数轴结合勾股定理得出x的值,进而得出答案.
    【详解】
    解:由题意可得:点A所表示的数为x为:-,
    则x1的值为:1.
    故选:A.
    此题主要考查了实数与数轴,正确得出x的值是解题关键.
    6、B
    【解析】
    连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.
    【详解】
    解:如图,连接AC,
    由题意得,∠CBA=90°,
    ∴AC==(海里),
    故选B.
    本题考查了勾股定理的应用和方向角问题,熟练掌握勾股定理、正确标注方向角是解题的关键.
    7、D
    【解析】
    连接BD、BF,由正方形的性质可得:∠CBD=∠FBG=45°,∠DBF=90°,再应用勾股定理求BD、BF和DF,最后应用“直角三角形斜边上中线等于斜边一半”可求得BH.
    【详解】
    如图,连接BD、BF,
    ∵四边形ABCD和四边形BEFG都是正方形,
    ∴AB=AD=3,BE=EF=4,∠A=∠E=90°,∠ABD=∠CBD=∠EBF=∠FBG=45°,
    ∴∠DBF=90°,BD=3,BF=4,
    ∴在Rt△BDF中,DF==,
    ∵H为线段DF的中点,
    ∴BH=DF=.
    故选:D.
    本题考查了正方形的性质、等腰直角三角形边的关系、勾股定理、直角三角形性质等,解题关键添加辅助线构造直角三角形.
    8、C
    【解析】
    根据样本的定义即可判断.
    【详解】
    依题意可知样本是300名学生的身高情况
    故选C.
    此题主要考查统计分析,解题的关键是熟知样本的定义.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、乙.
    【解析】
    根据方差反应了数据的波动情况,即可完成作答。
    【详解】
    解:因为S甲2=5>S乙2=3.5,即乙比较稳定,故答案为:乙。
    本题考查了方差在数据统计中的作用,即方差是反映数据波动大小的量。
    10、5.
    【解析】
    设这个多边形是n边形,由题意得,
    (n-2) ×180°=540°,解之得,n=5.
    11、
    【解析】
    由矩形的性质可证明S△DFP=S△PBE,即可求解.
    【详解】
    解:作PM⊥AD于M,交BC于N.
    则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
    ∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,
    ∴S△DFP=S△PBE=×2×5=5,
    ∴S阴=5+5=10,
    故答案为:10.
    本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△DFP=S△PBE.
    12、1.865
    【解析】
    先计算出4个数据的平均数,再计算出方差即可.
    【详解】
    ∵,

    =
    =
    =
    =
    =1.865.
    故答案为:1.865.
    此题主要考查了方差的计算,求出平均数是解决此题的关键.
    13、1
    【解析】
    将△BCD绕点B逆时针旋转60°得到△ABD',根据已知条件可以得到△BDD'是等边三角形,△ADD'是直角三角形,即可求解.
    【详解】
    将△BCD绕点B逆时针旋转60°得到△ABD',
    ∴BD=BD',AD'=CD,
    ∴∠DBD'=60°,
    ∴△BDD'是等边三角形,
    ∴∠BDD'=60°,
    ∵BD=1,DC=2,AD=,
    ∴DD'=1,AD'=2,
    在△ADD'中,AD'2=AD2+DD'2,
    ∴∠ADD'=90°,
    ∴∠ADB=60°+90°=1°,
    故答案为1.
    本题考查旋转的性质,等边三角形和直角三角形的性质;能够通过图形的旋转构造等边三角形和直角三角形是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、探究三:16,6;结论:n², ;应用:625,300.
    【解析】
    探究三:模仿探究一、二即可解决问题;
    结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有 个;
    应用:根据结论即可解决问题.
    【详解】
    解:探究三:
    如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;
    边长为2的正三角形有个.
    结论:
    连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;
    边长为2的正三角形,共有个.
    应用:
    边长为1的正三角形有=625(个),
    边长为2的正三角形有 (个).
    故答案为探究三:16,6;结论:n², ;应用:625,300.
    本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.
    15、30元
    【解析】
    试题分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.
    解:设第一批盒装花的进价是x元/盒,则
    2×=,
    解得 x=30
    经检验,x=30是原方程的根.
    答:第一批盒装花每盒的进价是30元.
    考点:分式方程的应用.
    16、(1)1;(2)证明见解析.
    【解析】
    分析:(1)因为菱形的对角线互相垂直及互相平分就可以在Rt△AOB中利用勾股定理求出OB,然后利用平行四边形的判定及性质就可以求出△BDE的周长;
    (2)容易证明△BOP≌△DOQ,再利用它们对应边相等就可以了.
    详解:(1)解:∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD=5,AC⊥BD,OB=OD,OA=OC=3,
    ∴OB==4,BD=2OB=8,
    ∵AD∥CE,AC∥DE,
    ∴四边形ACED是平行四边形,
    ∴CE=AD=BC=5,DE=AC=6,
    ∴△BDE的周长是:BD+BC+CE+DE=8+10+6=1.
    (2)证明:∵四边形ABCD是菱形,
    ∴AD∥BC,
    ∴∠QDO=∠PBO,
    ∵在△DOQ和△BOP中

    ∴△DOQ≌△BOP(ASA),
    ∴BP=DQ.
    点睛:本题考查了菱形的性质,平行四边形的判定与性质,勾股定理,也考查了全等三角形的判定及性质;这是一道综合性的题,熟悉每个知识点是解决问题的关键.
    17、见解析.
    【解析】
    连接EO,首先根据O为BD和AC的中点,得出四边形ABCD是平行四边形,在Rt△AEC中EO=AC,在Rt△EBD中,EO=BD,得到AC=BD,可证出结论.
    【详解】
    解:连接如图所示:
    是、的中点,
    ∴,,
    ∴四边形是平行四边形,
    在中,为中点,,
    在中,为中点,,
    ,又四边形是平行四边形,
    平行四边形是矩形.
    此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.
    18、(1);(2);(3)当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形
    【解析】
    (1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;
    (2)设出发t秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;
    (3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时,则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时,则BC+CQ=24,易求得t;③当BC=BQ时,过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.
    【详解】
    (1)当t=2时BQ=2×2=4 cm,BP=AB-AP=16-2×1=14 cm ,∠B=90°,
    ∴PQ= = cm
    (2)依题意得: BQ=2t ,BP=16-t
    2t =16-t 解得:t=
    即出发秒钟后,△PQB能形成等腰三角形;
    (3) ①当CQ=BQ时(如下图),则∠C=∠CBQ,
    ∵∠ABC=90°
    ∴∠CBQ+∠ABQ=90°
    ∠A+∠C=90°
    ∴∠A=∠ABQ
    ∴BQ=AQ
    ∴CQ=AQ=10
    ∴BC+CQ=22
    ∴t=22÷2=11秒
    ②当CQ=BC时(如图2),则BC+CQ=24
    ∴t=24÷2=12秒
    ③当BC=BQ时(如图3),过B点作BE⊥AC于点E,
    则BE= ,
    ∴CE=,
    故CQ=2CE=14.4,
    所以BC+CQ=26.4,
    ∴t=26.4÷2=13.2秒
    由上可知,当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形
    此题考查勾股定理,等腰三角形的判定,解题关键在于作辅助线.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(1-x)2
    【解析】
    根据题意即可列出代数式.
    【详解】
    ∵某种手机每部售价为元,如果每月售价的平均降低率为,
    则一个月后的售价为(1-x)
    故两个月后的售价为(1-x)2
    此题主要考查列代数式,解题的关键是根据题意找到数量关系.
    20、10
    【解析】
    利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
    【详解】
    ∵通过大量重复试验后发现,摸到红球的频率稳定于0.4,
    ∴=0.4,
    解得:n=10.
    故答案为:10.
    此题考查利用频率估计概率,掌握运算法则是解题关键
    21、a2bc.
    【解析】
    解:观察得知,这三个分母都是单项式,确定这几个分式的最简公分母时,相同字母取次数最高的,不同字母连同它的指数都取着,系数取最小公倍数,所以它们的最简公分母是a2bc.
    故答案为:a2bc.
    考点:分式的通分.
    22、1
    【解析】
    根据同类二次根式可知,两个二次根式内的式子相等,从而得出a的值.
    【详解】
    ∵最简二次根式与是同类二次根式
    ∴1+a=4a-2
    解得:a=1
    故答案为:1.
    本题考查同类二次根式的应用,解题关键是得出1+a=4a-2.
    23、1
    【解析】
    原式=2(m2+2mn+n2)-6,
    =2(m+n)2-6,
    =2×9-6,
    =1.
    二、解答题(本大题共3个小题,共30分)
    24、(1)第一次每本的进货价是1元;(2):每本售价为1.2元.
    【解析】
    (1)设第一次每本的进货价是x元,根据提价之后用6000元购进数量比第一次少了1000本,列方程求解;
    (2)设售价为y元,根据获利不低于4200元,列不等式求解
    【详解】
    解:(1)设第一次每本的进货价是x元, 由题意得:=1000, 解得:x=1.
    答:第一次每本的进货价是1元;
    (2)设售价为y元, 由题意得,(6000+2000)y﹣12000≥4200, 解得:y≥1.2.
    答:每本售价为1.2元.
    考点:分式方程的应用;一元一次不等式的应用
    25、(1)甲、乙两队单独完成这取工程各需60,90天;(2)甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.
    【解析】
    (1)根据题意列方程求解;
    (2)用总工作量减去甲队的工作量,然后除以乙队的工作效率得到乙队的施工天数,令施工总费用为w万元,求出w与m的函数解析式,根据m的取值范围以及一次函数的性质求解即可.
    【详解】
    (1)设甲、乙两队单独完成这取工程各需2x,3x天,
    由题意得:,
    解得:,
    经检验:是原方程的根,
    ∴,,
    答:甲、乙两队单独完成这取工程各需60,90天;
    (2)由题意得:,
    令施工总费用为w万元,则.
    ∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,
    ∴,,
    ∴,
    ∴当时,完成此项工程总费用最少,此时,元,
    答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.
    本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.
    26、 (1) 四边形EBFG是矩形;(2)证明见解析;(3).
    【解析】
    (1)根据对角线互相平分的四边形平行四边形可得四边形EBFG是平行四边形,再由∠CBF=90°,即可判断▱EBFG是矩形.
    (2)由直角三角形斜边中线等于斜边一半可知BD=CD,OB=OE,即可得∠C=∠CBD,∠OEB=∠OBE,由∠FDC=90°即可得∠DBG=90°;
    (3)连接AE,由AB=BE=1勾股定理易求AE=,结合已知易证△ABC≌△EBF,得BF=BC=1+再由勾股定理即可求出EF=.
    【详解】
    解:(1)结论:四边形EBFG是矩形.
    理由:∵OE=OF,OB=OG,
    ∴四边形EBFG是平行四边形,
    ∵∠ABC=90°即∠CBF=90°,
    ∴▱EBFG是矩形.
    (2)∵CD=AD,∠ABC=90°,
    ∴BD=CD
    ∴∠C=∠CBD,
    同理可得:∠OEB=∠OBE,
    ∵DF垂直平分AC,即∠EDC=90°,
    ∴∠C+∠DEC=90°,
    ∵∠DEC=∠OEB,
    ∴∠CBD+∠OBE=90°,
    ∴BD⊥BG.
    (3)如图:连接AE,
    在Rt△ABE中,AB=BE=1,
    ∴AE=,
    ∵DF是AC垂直平分线,
    ∴AE=CE,
    ∴BC=1+
    ∵∠CDE=∠CBF=90°,
    ∴∠C=∠BFE,
    在△ABC和△EBF中,

    ∴△ABC≌△EBF(AAS)
    ∴BF=BC,
    在Rt△BEF中,BE=1,BF=1+,
    ∴EF=.
    本题主要考查了矩形的判定、全等三角形判定和性质、勾股定理和直角三角形性质,解(2)题关键是通过直角三角形斜边中线等于斜边一半得出BD=CD,OB=OE, 解(3)题关键证明△ABC≌△EBF.
    题号





    总分
    得分
    相关试卷

    2025届郑州二中学九上数学开学调研模拟试题【含答案】: 这是一份2025届郑州二中学九上数学开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届江苏省滨淮九上数学开学调研模拟试题【含答案】: 这是一份2025届江苏省滨淮九上数学开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年重庆北碚区数学九上开学调研模拟试题【含答案】: 这是一份2024年重庆北碚区数学九上开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map