甘肃省金昌市第六中学2025届九上数学开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)己知直角三角形一个锐角60°,斜边长为2,那么此直角三角形的周长是( )
A.B.3C.+2D.+3
2、(4分)下列命题的逆命题成立的是( )
A.对顶角相等B.两直线平行,同位角相等
C.如果a=b,那么a2 =b2D.正方形的四条边相等
3、(4分)如果点在正比例函数的图像上,那么下列等式一定成立的是( )
A.B.C.D.
4、(4分)某校规定学生的数学学期评定成绩满分为100,其中平时成绩占50%,期中考试成绩占20%,期末考试成绩占30%.小红的三项成绩(百分制)依次是86、70、90,小红这学期的数学学期评定成绩是( )
A.90B.86C.84D.82
5、(4分)下列等式从左边到右边的变形,是因式分解的是( )
A.(3﹣a)(3+a)=9﹣a2B.x2﹣y2+1=(x+y)(x﹣y)+1
C.a2+1=a(a+)D.m2﹣2mn+n2=(m﹣n)2
6、(4分)如图,点P是等边△ABC的边上的一个做匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是( )
A.B.C.D.
7、(4分)如图,在中,点、分别是、的中点,如果,那么的长为( ).
A.4B.5C.6D.7
8、(4分)下列各曲线中,不能表示y是x的函数是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若3,4,a和5,b,13是两组勾股数,则a+b的值是________.
10、(4分)分式方程有增根,则m=_____________.
11、(4分)正方形的对角线长为,则它的边长为_________。
12、(4分)一粒米的重量约为0.000036克,用科学记数法表示为_____克.
13、(4分)甲、乙两人进行射击测试,每人20次射击的平均成绩恰好相等,且他们的标准差分别是S甲=1.8,S乙=0.1.在本次射击测试中,甲、乙两人中成绩较为稳定的是_____.(填:甲或乙)
三、解答题(本大题共5个小题,共48分)
14、(12分)蚌埠“一带一路”国际龙舟邀请赛期间,小青所在学校组织了一次“龙舟”故事知多少比赛,小青从全体学生中随机抽取部分同学的分数(得分取正整数,满分为100分)进行统计.以下是根据抽取同学的分数制作的不完整的频率分布表和频率分布直方图,请根据图表,回答下列问题: :
(1)根据上表填空: __,=. ,= .
(2)若小青的测试成绩是抽取的同学成绩的中位数,那么小青的测试成绩在什么范围内?
(3)若规定:得分在的为“优秀”,若小青所在学校共有600名学生,从本次比赛选取得分为“优秀”的学生参加决赛,请问共有多少名学生被选拔参加决赛?
15、(8分)今年5月19日为第29个“全国助残日”.我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界).
(1)填空:_________,_________.
(2)补全频数分布直方图.
(3)该校有2000名学生,估计这次活动中爱心捐款额在的学生人数.
16、(8分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若点E到CD的距离为2,CD=3,试求出矩形ABCD的面积.
17、(10分)如图,在平行四边形中,对角线、相交于点,是延长线上的点,且为等边三角形.
(1)四边形是菱形吗?请说明理由;
(2)若,试说明:四边形是正方形.
18、(10分)如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=5,且AC+BC=6,求AB的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是_____.
20、(4分)小玲在一次班会中参加知识抢答活动,现有语文题道,数学题道,综合题道,她从中随机抽取道,抽中数学题的概率是_________.
21、(4分)参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x人参加同学聚会.列方程得____.
22、(4分)如图,已知等边三角形ABC的边长为7,点D为AB上一点,点E在BC的延长线上,且CE=AD,连接DE交AC于点F,作DH⊥AC于点H,则线段HF的长为 ____________.
23、(4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、3、4,则原直角三角形纸片的斜边长是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)已知一次函数y=﹣x+1.
(1)在给定的坐标系中画出该函数的图象;
(2)点M(﹣1,y1),N(3,y2)在该函数的图象上,试比较y1与y2的大小.
25、(10分)如图,已知函数和的图象交于点,这两个函数的图象与轴分别交于点、.
(1)分别求出这两个函数的解析式;
(2)求的面积;
(3)根据图象直接写出时,的取值范围.
26、(12分)图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形.
(2)若DE=4cm,∠EBC=60°,求菱形BCFE的面积。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据直角三角形的性质及勾股定理即可解答.
【详解】
如图所示,
Rt△ABC中,AB=2,
故
故此三角形的周长是+3.
故选:D.
考查勾股定理,含30度角的直角三角形,熟练掌握含30度角的直角三角形的性质是解题的关键.
2、B
【解析】
分别写出四个命题的逆命题,然后判断真假即可.
【详解】
A,逆命题是相等的角是对顶角,错误;
B,逆命题是同位角相等,两直线平行,正确;
C,逆命题是如果,则,错误;
D,逆命题是四条边相等的四边形是正方形,错误;
故选:B.
本题主要考查逆命题的真假,能够写出逆命题是解题的关键.
3、D
【解析】
由函数图象与函数表达式的关系可知,点A满足函数表达式,可将点A的坐标代入函数表达式,得到关于a、b的等式;再根据等式性质将关于a、b的等式进行适当的变形即可得出正确选项.
【详解】
∵点A(a,b)是正比例函数图象上的一点,
∴,
∴.
故选D.
此题考查正比例函数,解题关键在于将点A的坐标代入函数表达式.
4、C
【解析】
根据加权平均数的计算方法列出算式,再进行计算即可得出答案.
【详解】
解:小红这学期的数学学期评定成绩是:86×50%+70×20%+90×30%=84(分);
故选:C.
本题考查的是加权平均数的求法.熟记公式是解决本题的关键.
5、D
【解析】
利用把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出答案.
【详解】
A、(3﹣a)(3+a)=9﹣a2,是整式的乘法运算,故此选项错误;
B、x2﹣y2+1=(x+y)(x﹣y)+1,不符合因式分解的定义,故此选项错误;
C、a2+1=a(a+),不符合因式分解的定义,故此选项错误;
D、m2﹣2mn+n2=(m﹣n)2,正确.
故选:D.
此题主要考查了因式分解的意义,正确把握定义是解题关键.
6、C
【解析】
设等边三角形的高为h,点P的运动速度为v,根据等边三角形的性质可得出点P在AB上运动时△ACP的面积为S,也可得出点P在BC上运动时的表达式,继而结合选项可得出答案.
【详解】
设等边三角形的高为h,点P的运动速度为v,
①点P在AB上运动时,△ACP的面积为S=hvt,是关于t的一次函数关系式;
②当点P在BC上运动时,△ACP的面积为S=h(AB+BC-vt)=-hvt+h(AB+BC),是关于t的一次函数关系式;
故选C.
此题考查了动点问题的函数图象,根据题意求出两个阶段S与t的关系式,难度一般.
7、C
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.
【详解】
解:∵点D、E分别是AB、AC的中点,
∴DE是△ABC的中位线,
∴BC=2DE=2×3=1.
故选C.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,熟记定理是解题的关键.
8、C
【解析】
根据函数是一一对应的关系,给自变量一个值,有且只有一个函数值与其对应,就是函数,如果不是,则不是函数.
【详解】
解:A、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A不符合题意;
B、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B不符合题意;
C、满足对于x的每一个取值,y有两个值与之对应关系,故C符合题意;
D、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D不符合题意;
故选C.
本题主要考查函数的自变量与函数值是一一对应的,即给自变量一个值,有唯一的一个值与它对应.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】解:∵3,4,a和5,b,13是两组勾股数,∴a=5,b=12,∴a+b=1.故答案为:1.
10、1
【解析】
分式方程去分母得:x+x﹣1=m, 根据分式方程有增根得到x﹣1=0,即x=1,
将x=1代入整式方程得:1+1﹣1=m,
则m=1,
故答案为1.
11、4
【解析】
由正方形的性质求出边长,即可得出周长.
【详解】
如图所示:
∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠B=90°,
∴AB+BC=AC,
∴AB= =4,
故答案为:4
此题考查正方形的性质,解题关键在于利用勾股定理
12、3.6×10﹣1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.000036=3.6×10﹣1;
故答案为:3.6×10﹣1.
本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
13、乙
【解析】
根据标准差的意义求解可得.标准差越小,稳定性越好.
【详解】
解:∵S甲=1.8,S乙=0.1,
∴S甲>S乙,
∴成绩较稳定的是乙.
故答案为:乙.
本题考查标准差的意义标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标标准差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
三、解答题(本大题共5个小题,共48分)
14、(1);(2);(1)24.
【解析】
(1)根据频数、频率、总数之间的关系一一解决问题即可;
(2)根据中位数的定义即可判断;
(1)用样本估计总体的思想解决问题即可.
【详解】
解:(1)9÷0.18=50(人).
a=50×0.06=1,m=50﹣(9+21+1+2)=15,b=15÷50=0.1.
故答案为:1,0.1,15;
(2)共有50名学生,中位数是第25、26个数据的平均数,第25、26个数据在第1组,所以小青的测试成绩在70≤x<80范围内;
(1)×600=24(人).
答:共有24名学生被选拔参加决赛.
本题考查频数分布直方图、样本估计总体的思想、频数分布表、中位数的定义等知识,解题的关键是熟练掌握基本知识,所以中考常考题型.
15、(1),.(2)补图见解析;(3)1200人.
【解析】
(1)先根据5≤x<l0的频数及其百分比求出样本容量,再根据各组频数之和等于总人数求出a的值,继而由百分比的概念求解可得;
(2)根据所求数据补全图形即可得;
(3)利用样本估计总体思想求解可得.
【详解】
解:(1)∵样本容量为3÷7.5%=40,
∴a=40-(3+7+10+6)=14,
则b=14÷40×100%=35%,
故答案为:14,35%;
(2)补图如下.
(3)估计这次活动中爱心捐款额在15≤x<25的学生人数约为,
2000×(35%+25%)=1200(人).
答:估计这次活动中爱心捐款额在的学生有1200人.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
16、(1)见解析;(2)矩形ABCD的面积=1.
【解析】
(1)根据对边平行得四边形OCED是平行四边形,由原矩形对角线相等且互相平分得OC=OD,所以四边形OCED是菱形;
(2)根据三角形面积公式和矩形的面积等于4个△DEC的面积解答即可.
【详解】
(1)∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD,OD=BD,OC=AC,
∴OC=OD,
∴▱OCED是菱形;
(2)∵点E到CD的距离为2,CD=3,
∴△DEC的面积= ,
∴矩形ABCD的面积=4×3=1.
本题考查了矩形的性质,是常考题型,难度不大;需要熟练掌握矩形、菱形的边、角、对角线的关系,不能互相混淆.
17、(1)四边形为菱形,理由见解析;(2)见解析
【解析】
(1)根据“对角线互相垂直的平行四边形是菱形”即可求证.
(2)根据“有一个角是90°的菱形是正方形”即可求证.
【详解】
(1)四边形为菱形,理由:
在平行四边形中,,
是等边三角形.
,又、、、四点在一条直线上,.
平行四边形是菱形. (对角线互相垂直的平行四边形是菱形)
(2)由是等边三角形,,得到,,
..,
四边形是菱形,,,
四边形是正方形.(有一个角是90°的菱形是正方形)
本题考查了平行四边形的性质以及菱形、正方形的判定定理,熟练掌握相关性质定理是解答本题的关键.
18、.
【解析】
根据勾股定理得到,根据扇形面积公式、完全平方公式计算即可.
【详解】
,∵,
∴,
即:,
根据等式性质,两边都减去两个弓形面积,则
,
∵,
∴,
∴.
∵,
∴,
即,
∴.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2.1.
【解析】
连接CP,利用勾股定理列式求出AB,判断出四边形CFPE是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.
【详解】
解:如图,连接CP.
∵∠ACB=90°,AC=3,BC=1,
∴AB=,
∵PE⊥AC,PF⊥BC,∠ACB=90°,
∴四边形CFPE是矩形,
∴EF=CP,
由垂线段最短可得CP⊥AB时,线段EF的值最小,
此时,S△ABC=BC•AC=AB•CP,
即×1×3=×5•CP,
解得CP=2.1.
∴EF的最小值为2.1.
故答案为2.1.
20、
【解析】
随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.
【详解】
解:抽中数学题的概率为
,
故答案为:.
本题考查了概率,正确利用概率公式计算是解题的关键.
21、 x(x﹣1)=1
【解析】
利用一元二次方程应用中的基本数量关系:x人参加聚会,两人只握一次手,握手总次数为 x(x-1)解决问题即可.
【详解】
由题意列方程得,
x(x-1)=1.
故答案为:x(x-1)=1.
本题考查了一元二次方程的应用,熟知x人参加聚会,两人只握一次手,握手总次数为 x(x-1)这一基本数量关系是解题的关键.
22、
【解析】
证明:(1)过点D作DG∥BC交AC于点G,
∴∠ADG=∠B,∠AGD=∠ACB,∠FDG=∠E,
∵△ABC是等边三角形,
∴AB=AC,∠B=∠ACB=∠A=60°,
∴∠A=∠ADG=∠AGD=60°,
∴△ADG是等边三角形,
∴AD=DG
∵AD=CE,
∴DG=CE,
在△DFG与△EFC中
∴△DFG≌△EFC(AAS),
∴GF=FC=GC
又∵ DH⊥AC,
∴AH=HG=AG,
∴HF=HG+GF=AG+GC=AC=
故答案为:
此题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题
23、2或10.
【解析】
试题分析:先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.
试题解析:①如图:
因为CD=,
点D是斜边AB的中点,
所以AB=2CD=2,
②如图:
因为CE=
点E是斜边AB的中点,
所以AB=2CE=10,
综上所述,原直角三角形纸片的斜边长是2或10.
考点:1.勾股定理;2.直角三角形斜边上的中线;3.直角梯形.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)y1>y2.
【解析】
(1)根据两点确定一条直线作出函数图象即可;
(2)根据y随x的增大而减小求解.
【详解】
(1)令y=0,则x=2
令x=0,则y=1
所以,点A的坐标为(2,0)
点B的坐标为(0,1)
画出函数图象如图:
;
(2)∵一次函数y=﹣x+1中,k=-<0,∴y随x的增大而减小
∵﹣1<3
∴y1>y2.
本题考查了一次函数图象上点的坐标特征,一次函数图象,熟练掌握一次函数与坐标轴的交点坐标的求解方法是解题的关键.
25、 (1),;(2)S△ABC=;(3)时,.
【解析】
(1)把点P(-2,-5)分别代入函数y1=2x+b和y2=ax-3,求出a、b的值即可;
(2)根据(1)中两个函数的解析式得出A、B两点的坐标,再由三角形的面积公式即可得出结论;
(3)直接根据两函数图象的交点坐标即可得出结论.
【详解】
(1)∵将点代入,得,解得.
将点代入,得,解得.
这两个函数的解析式分别为和.
(2)∵在中,令,得.
.
∵在中,令,得,
.
.
(3)由函数图象可知,当时,.
本题考查的是一次函数与一元一次不等式,能利用函数图象直接得出不等式的解集是解答此题的关键.
26、 (1)证明见解析;
(2)菱形的面积为4×2=8.
【解析】
(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)因为∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.
【详解】
(1)证明:∵D、E分别是AB、AC的中点,
∴DE∥BC且2DE=BC,
又∵BE=2DE,EF=BE,
∴EF=BC,EF∥BC,
∴四边形BCFE是平行四边形,
又∵BE=FE,
∴四边形BCFE是菱形;
(2)∵∠EBC=60°,
∴△EBC是等边三角形,
∴菱形的边长为4,高为2,
∴菱形的面积为4×2=8.
本题考查三角形中位线定理和菱形的判定与性质,解题的关键是掌握三角形中位线定理和菱形的判定与性质.
题号
一
二
三
四
五
总分
得分
批阅人
组别
分组
频数
频率
1
9
0.18
2
3
21
0.42
4
0.06
5
2
2025届甘肃省兰州市西固区桃园中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2025届甘肃省兰州市西固区桃园中学数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届甘肃省金昌市九上数学开学复习检测试题【含答案】: 这是一份2025届甘肃省金昌市九上数学开学复习检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届甘肃省古浪县黄花滩初级中学九上数学开学教学质量检测模拟试题【含答案】: 这是一份2025届甘肃省古浪县黄花滩初级中学九上数学开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,九月份共生产零件万个,设八,填空题,解答题等内容,欢迎下载使用。