![甘肃省平凉市名校2025届九年级数学第一学期开学监测试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16264095/0-1729209087328/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![甘肃省平凉市名校2025届九年级数学第一学期开学监测试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16264095/0-1729209087375/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![甘肃省平凉市名校2025届九年级数学第一学期开学监测试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16264095/0-1729209087394/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
甘肃省平凉市名校2025届九年级数学第一学期开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为( )
A.(2,2)B.(2,)C.(,2)D.(+1,
2、(4分)若方程有增根,则m的值为( )
A.2B.4C.3D.-3
3、(4分)矩形不具备的性质是( )
A.对角线相等B.四条边一定相等
C.是轴对称图形D.是中心对称图形
4、(4分)要使式子有意义,则实数的取值范围是( )
A.B.C.D.
5、(4分)某次知识竞赛共有道题,每一题答对得分,答错或不答扣分,小亮得分要超过分,他至少要答对多少道题?如果设小亮答对了道题,根据题意列式得( )
A.B.
C.D.
6、(4分)下列函数:①y=2x+1 ②y=③y=x2﹣1 ④y=﹣8x中,是一次函数的有( )
A.1个B.2个C.3个D.4个
7、(4分)如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=25°,则∠EPF的度数是( )
A.100°B.120°C.130°D.150°
8、(4分)某鞋店试销一款学生运动鞋,销量情况如图所示,鞋店经理要关心哪种型号的鞋是否畅销,下列统计量最有意义的是( )
A.平均数B.中位数C.众数D.方差
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若一直角三角形的两直角边长为,1,则斜边长为_____.
10、(4分)设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn=_____.
11、(4分)已知菱形的两对角线长分别为6㎝和8㎝,则菱形的面积为______________㎝2
12、(4分)正n边形的一个外角的度数为60°,则n的值为 .
13、(4分)如图,平行四边形 中,的平分线交于点 , 的平分线 交于点 ,则 的长为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知反比例函数(k为常数,k≠0)的图象经过点A(2,3).
(1)求这个函数的解析式;
(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;
(3)当-3<x<-1时,求y的取值范围.
15、(8分)先化简,再求值:()•,其中x=﹣1.
16、(8分)如图,四边形在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数与的图象上,对角线于点,轴于点.
(1)若,试求的值;
(2)当,点是线段的中点时,试判断四边形的形状,并说明理由.
(3)直线与轴相交于点.当四边形为正方形时,请求出的长度.
17、(10分)提出问题:
(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;
类比探究:
(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由.
18、(10分)我们给出如下定义:把对角线互相垂直的四边形叫做“对角线垂直四边形”.
如图,在四边形中,,四边形就是“对角线垂直四边形”.
(1)下列四边形,一定是“对角线垂直四边形”的是_________.
①平行四边形 ②矩形 ③菱形 ④正方形
(2)如图,在“对角线垂直四边形”中,点、、、分别是边、、、的中点,求证:四边形是矩形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若,,则=___________.
20、(4分)如图,正方形中,,点在边上,且.将沿对折至,延长交边于点.连结、.下列结论:①;②;③是正三角形;④的面积为1.其中正确的是______(填所有正确答案的序号).
21、(4分)小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是________分.
22、(4分)若有意义,则x的取值范围是____.
23、(4分)若一个多边形的内角和与外角和之和是900°,则该多边形的边数是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了了解全校名学生的阅读兴趣,从中随机抽查了部分同学,就“我最感兴趣的书籍”进行了调查:A.小说、B.散文、C.科普、D.其他(每个同学只能选择一项),进行了相关统计,整理并绘制出两幅不完整的统计图,请你根据统计图提供的信息,解答下列问题:
(1)本次抽查中,样本容量为 ;
(2) , ;
(3)扇形统计图中,其他类书籍所在扇形的圆心角是 °;
(4)请根据样本数据,估计全校有多少名学生对散文感兴趣.
25、(10分)如图,一次函数与的图象相交于
(1)求点的坐标及;
(2)若一次函数与的图象与轴分别相交于点、,求的面积.
(3)结合图象,直接写出时的取值范围.
26、(12分)如图,在平面直角坐标系中,矩形的顶点坐标为,点在边上从点运动到点,以为边作正方形,连,在点运动过程中,请探究以下问题:
(1)的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;
(2)若为等腰三角形,求此时正方形的边长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
连接DB,如图,利用基本作图得到EF垂直平分AB,则DA=DB,再根据菱形的性质得到AD∥BC,AD=AB,则可判断△ADB为等边三角形,所以∠DAB=∠ABO=60°,然后计算出AD=2,从而得到D点坐标.
【详解】
连接DB,如图,
由作法得EF垂直平分AB,
∴DA=DB,
∵四边形ABCD是菱形,
∴AD∥BC,AD=AB,
∴AD=AB=DB,
∴△ADB为等边三角形,
∴∠DAB=60°,
∴∠ABO=60°,
∵A(0,),
∴OA=,
∴OB=OA=1,AB=2OB=2,
∴AD=AB=2,
而AD平行x轴,
∴D(2,).
故选:B.
考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和菱形的性质
2、D
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x−1)=0,得到x=1,然后代入化为整式方程的方程算出m的值.
【详解】
方程两边都乘(x−1),
得x=2(x−1)-m,
∵原方程有增根,
∴最简公分母(x−1)=0,
解得x=1,
当x=1时,1=2(1−1)-m
m=-1.
故选:D.
本题考查了分式方程的增根,增根问题可按如下步骤进行:
①让最简公分母为0确定增根;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
3、B
【解析】
根据矩形的性质即可判断.
【详解】
解:矩形的对边相等,四条边不一定都相等,B选项错误,由矩形的性质可知选项A、C、D正确.
故选:B
本题考查了矩形的性质,准确理解并掌握矩形的性质是解题的关键.
4、C
【解析】
根据二次根式的性质,被开方数大于等于0,就可以求解.
【详解】
根据题意得:x−2⩾0,
解得x⩾2.
故选:C
此题考查二次根式有意义的条件,解题关键在于掌握其性质
5、D
【解析】
小亮答对题的得分:,小亮答错题的得分:,不等关系:小亮得分要超过分.
【详解】
根据题意,得
.
故选:.
此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,找到不等关系是解题的关键.
6、B
【解析】
根据一次函数的定义来分析判断即可,在某一个变化过程中,设有两个变量x和y,如果满足这样的关系:y=kx+b(k为一次项系数且k≠0,b为任意常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量 (又称函数).
【详解】
解:①y=2x+1是一次函数,②y=是反比例函数,不是一次函数,③y=x2﹣1是二次函数,不是一次函数,④y=﹣8x是一次函数,
故选:B.
一次函数的定义是本题的考点,熟练掌握其定义是解题的关键.
7、C
【解析】
根据三角形中位线定理得到PE= AD,PF=BC,根据等腰三角形的性质、三角形内角和定理计算即可.
【详解】
解:∵P是对角线BD的中点,E,F分别是AB,CD的中点,
∴PE=AD,PF=BC,
∵AD=BC,
∴PE=PF,
∴∠PFE=∠PEF=25°,
∴∠EPF=130°,
故选:C.
本题考查三角形中位线定理,解题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.
8、C
【解析】
众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.
【详解】
对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.
故选:C.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据勾股定理计算,得到答案.
【详解】
解:斜边长==1,
故答案为:1.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
10、-1
【解析】
根据一元二次方程根与系数的关系即可得出m+n=﹣2,mn=﹣1,将其代入m+n+mn中即可求出结论.
【详解】
∵m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,
∴m+n=﹣2,mn=﹣1,
则m+n+mn=﹣2﹣1=﹣1.
故答案为:﹣1.
本题考查了一元二次方程根与系数的关系,熟练运用一元二次方程根与系数的关系是解决问题的关键.
11、14
【解析】
根据菱形的面积等于两对角线乘积的一半求得其面积即可.
【详解】
由已知得,菱形的面积等于两对角线乘积的一半
即:6×8÷1=14cm1.
故答案为:14.
此题主要考查菱形的面积等于两条对角线的积的一半.
12、1
【解析】
解:∵正n边形的一个外角的度数为10°,
∴n=310÷10=1.
故答案为:1.
13、1
【解析】
由角的等量关系可分别得出△ABG和△DCE是等腰三角形,得出AB=AG,DC=DE,则有AG=DE,从而证得AE=DG,进而求出EG的长.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,AB=CD,
∴∠GBC=∠BGA,∠BCE=∠CED,
又∵BG平分∠ABC,CE平分∠BCD,
∴∠ABG=∠GBC,∠BCE=∠ECD,
∴∠ABG=∠AGB,∠ECD=∠CED.
∴AB=AG,CD=DE,
∴AG=DE,
∴AG-EG=DE-EG,
即AE=DG,
∵AB=5,AD=6,
∴AG=5,DG=AE=1,
∴EG=1,
故答案为1.
本题考查平行四边形的性质、等腰三角形判定等知识.由等腰三角形的判定和等量代换推出AG=DE是关键.运用平行四边形的性质和等腰三角形的知识解答.
三、解答题(本大题共5个小题,共48分)
14、(1)这个函数的解析式为:;(1)点C在函数图象上,理由见解析;(3),-2<y<-1.
【解析】
(1)把点A的坐标代入已知函数解析式,通过方程即可求得k的值;
(1)只要把点B、C的坐标分别代入函数解析式,横纵坐标坐标之积等于2时,即该点在函数图象上;
(3)根据反比例函数图象的增减性解答问题.
【详解】
解:(1)∵反比例函数(k为常数,k≠0)的图象经过点A(1,3),
∴把点A的坐标代入解析式,得,解得,k=2.
∴这个函数的解析式为:.
(1)∵反比例函数解析式,
∴2=xy.
分别把点B、C的坐标代入,得
(-1)×2=-2≠2,则点B不在该函数图象上;
3×1=2,则点C在函数图象上.
(3)∵k>0,
∴当x<0时,y随x的增大而减小.
∵当x=-3时,y=-1,当x=-1时,y=-2,
∴当-3<x<-1时,-2<y<-1.
15、1﹣2.
【解析】
先根据分式混合运算的法则把括号里的进行化简,然后进行乘法运算,再把x的值代入进行计算即可.
解:原式=
=3(x+1)﹣x+1=3x+3﹣x+1=1x+3.
当x=﹣1时,原式=1×(﹣1)﹣1=1﹣2.
16、(1)1;(2)(2)四边形ABCD为菱形,理由见解析;(3)
【解析】
(1)由点N的坐标及CN的长度可得出点C的坐标,再利用反比例函数图象上点的坐标特征可求出点n的值;
(2)利用反比例函数图象上点的坐标特征可得出点A,C的坐标,结合点P为线段AC的中点可得出点P的坐标,利用反比例函数图象上点的坐标特征可得出点B,D的坐标,结合点P的坐标可得出BP=DP,利用“对角线互相垂直平分的四边形为菱形”可证出四边形ABCD为菱形;
(3)利用正方形的性质可得出AC=BD且点P为线段AC及BD的中点,利用反比例函数图象上点的坐标特征可求出点A,C,B,D的坐标,结合AC=BD可得出关于n的方程,解之即可得出结论.
【详解】
(1)∵点N的坐标为(2,0),CN⊥x轴,且,
∴点C的坐标为(2,).
∵点C在反比例函数的图象上,
∴n=2×=1.
(2)四边形ABCD为菱形,理由如下:
当n=2时,.
当x=2时,,
∴点C的坐标为(2,1),点A的坐标为(2,4).
∵点P是线段AC的中点,
∴点P的坐标为(2,).
当y=时,,
解得:,
∴点B的坐标为,点D的坐标为,
∴,
∴BP=DP.
又∵AP=CP,AC⊥BD,
∴四边形ABCD为菱形.
(3)∵四边形ABCD为正方形,
∴AC=BD,且点P为线段AC及BD的中点.
当x=2时,y1=n,y2=2n,
∴点A的坐标为(2,2n),点C的坐标为(2,n),AC=n,
∴点P的坐标为.
同理,点B的坐标为,点D的坐标为,.
∵AC=BD,
∴,
∴,
∴点A的坐标为,点B的坐标为.
设直线AB的解析式为y=kx+b(k≠0),
将A,B代入y=kx+b,得:,
解得:,
∴直线AB的解析式为y=x+.
当x=0时,y=x+,
∴点E的坐标为(0,),
∴当四边形ABCD为正方形时,OE的长度为.
本题考查了反比例函数图象上点的坐标特征、菱形的判定以及正方形的性质,解题的关键是:(1)根据点C的坐标,利用反比例函数图象上点的坐标特征求出n值;(2)利用“对角线互相垂直平分的四边形为菱形”,证出四边形ABCD为菱形;(3)利用正方形的性质及反比例函数图象上点的坐标特征,找出关于n的方程.
17、(1)见解析;(2)EF=GH,理由见解析
【解析】
(1)由正方形的性质可得AB=DA,∠ABE=90°=∠DAH.又由∠ADO+∠OAD=90°,可证得∠HAO=∠ADO,继而证得△ABE≌△DAH,可得AE=DH;
(2)将FE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH.根据(1)的结论得AM=DN,所以EF=GH;
【详解】
(1)证明:∵四边形ABCD是正方形,
∴AB=DA,∠ABE=90°=∠DAH.
∴∠HAO+∠OAD=90°.
∵AE⊥DH,
∴∠ADO+∠OAD=90°.
∴∠HAO=∠ADO.
在△ABE和△DAH中
,
∴△ABE≌△DAH(ASA),
∴AE=DH;
(2)解:EF=GH.
理由:如图所示:
将FE平移到AM处,则AM∥EF,AM=EF.
将GH平移到DN处,则DN∥GH,DN=GH.
∵EF⊥GH,
∴AM⊥DN,
根据(1)的结论得AM=DN,所以EF=GH.
此题考查四边形综合题,解题关键在于证明△ABE≌△DAH,再根据平移的性质求得AM=EF,DN=GH.
18、(1) ③④;(2)详见解析
【解析】
(1)根据“对角线垂直四边形"的定义求解;
(2)根据三角形中位线的性质得到HG//EF,HE//GF,则可判断四边形EFGH是平行四边形,再证明∠EHG=90°,然后判断四边形EFGH是矩形;
【详解】
(1) 菱形和正方形是“对角线垂直四边形,故③④满足题意.
(2)证明:∵点分别是边、、、的中点,
∴,且;,且;.
∴.
∴四边形是平行四边形.
∵,
∴,
又∵,
∴.
∴.
∴是矩形.
本题考查了中点四边形:任意四边形各边中点的连线所组成的四边形为平行四边形,也考查了三角形中位线性质、菱形、正方形的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
首先根据平方差公式进行变换,然后直接代入,即可得解.
【详解】
解:根据平方差公式,可得
=
将,,代入,得
原式==
故答案为.
此题主要考查平方差公式的运用,熟练掌握即可解题.
20、①②④
【解析】
①根据折叠的性质可以得到∠B=∠AFG=1°,AB=AF,AG=AG,根据HL定理即可证明两三角形全等;
②不妨设BG=FG=x,(x>0),则CG=30-x,EG=10+x,在Rt△CEG中,利用勾股定理即可列方程求得;
③利用②得出的结果,结合折叠的性质求得答案即可;
④根据三角形的面积公式可得:S△FGC=S△EGC,即可求解.
【详解】
解:如图:
在正方形ABCD中,AD=AB,∠D=∠B=∠C=1°,
又∵△ADE沿AE对折至△AFE,延长EF交边BC于点G
∴∠AFG=∠AFE=∠D=1°,AF=AD,
即有∠B=∠AFG=1°,AB=AF,AG=AG,
在直角△ABG和直角△AFG中,
AB=AF,AG=AG,
∴△ABG≌△AFG;正确.
∵AB=30,点E在边CD上,且CD=3DE,
∴DE=FE=10,CE=20,
不妨设BG=FG=x,(x>0),
则CG=30-x,EG=10+x,
在Rt△CEG中,(10+x)2=202+(30-x)2
解得x=15,于是BG=GC=15;正确.
∵BG=GF=CG,
∴△CFG是等腰三角形,
∵BG=AB,
∴∠AGB≠60°,
则∠FGC≠60°,
∴△CFG不是正三角形.错误.
∵,
∴,
∴S△FGC=S△EGC=××20×15=1.正确.
正确的结论有①②④.
故答案为:①②④.
本题考查了正方形的性质,以及图形的折叠的性质,三角形全等的证明,理解折叠的性质是关键.
21、79
【解析】
解:本学期数学总评分=70×30%+80×30%+85×40%=79(分)
故答案为79
22、x≥1.
【解析】
直接利用二次根式有意义的条件进而分析得出答案.
【详解】
∵有意义,∴x≥1,
故答案为:x≥1.
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
23、1
【解析】
先根据已知条件以及多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.
【详解】
解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,
∴多边形的内角和是900﹣360=140°,
∴多边形的边数是:140°÷180°+2=3+2=1.
故答案为:1.
本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n边形的内角和为:(n-2) ×180°, n边形的外角和为:360°.
二、解答题(本大题共3个小题,共30分)
24、(1)50;(2)6,15;(3)72;(4)288.
【解析】
【分析】(1)根据小说有19人占比为38%即可求得样本容量;
(2)用样本容量乘以科普的比可求得b的值,再用样本容量减去小说、科普、其他的人数即可求得a的值;
(3)用其他所占的比乘以360度即可得;
(4)用2400乘以喜欢散文类所占的比例即可得.
【详解】(1)样本容量为:19÷38%=50,
故答案为50;
(2)b=50×30%=15,
a=50-19-15-10=6,
故答案为6,15;
(3)其他类书籍所在扇形的圆心角为:=72°,
故答案为72;
(4)估计全校对散文感兴趣的学生约有:=288人.
【点睛】本题考查了条形统计图与扇形统计图的综合运用,认真识图,从图中找到必要的解题信息是解题的关键.
25、(1);(2)9;(3)时的取值范围是.
【解析】
(1)把代入中,求得n,再代入可得m的值;
(2)分别求得B、C的坐标,以及BC的长,再利用面积公式求出答案;
(3)观察图象可直接得出结果。
【详解】
解:(1)把代入中,则
∴
把代入中,则
(2)当时,,,则点坐标为;
当时,,则点坐标为;
∴,
∴的面积;
(3)根据图象可知,时的取值范围是.
本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.也考查了待定系数法和三角形的面积。
26、(1)不变,;(2)正方形ADEF的边长为或或.
【解析】
(1)作交延长线于,证明,从而可得 ,继而根据三角形面积公式进行计算即可;
(2)分、、三种情况分别讨论求解即可.
【详解】
(1)作交延长线于,
∵正方形中,,,
∴,
∵,∴,
∴,
∵矩形中,,
∴,∴,
∴,
∴;
(2)①当时,作 ,
∵正方形中,,
∴,∴,
同(1)可得≌,
∴, ∴,
∴;
②当时,,
∵正方形中,,,
∴,∴≌,
∴,
∵矩形中,,
∴ ;
③当时,作,
同理得, ,
∴;
综上,正方形ADEF的边长为或或.
本题考查了矩形的性质,正方形的性质,等腰三角形的性质,全等三角形的判定与性质等,熟练掌握和灵活运用相关知识是解题的关键.注意分类讨论思想的运用.
题号
一
二
三
四
五
总分
得分
批阅人
型号
22.5
23
23.5
24
24.5
销量(双)
5
10
15
8
3
2024年甘肃省天水市名校九上数学开学监测试题【含答案】: 这是一份2024年甘肃省天水市名校九上数学开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年甘肃省庆阳市数学九年级第一学期开学监测试题【含答案】: 这是一份2024年甘肃省庆阳市数学九年级第一学期开学监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年甘肃省平凉市铁路中学九年级数学第一学期开学监测模拟试题【含答案】: 这是一份2024年甘肃省平凉市铁路中学九年级数学第一学期开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。