甘肃省武威第十九中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】
展开这是一份甘肃省武威第十九中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)四边形ABCD的对角线AC与BD相等且互相垂直,则顺次连接这个四边形四边的中点得到四边形是( )
A.平行四边形B.矩形C.菱形D.正方形
2、(4分)在圆的周长C=2πR中,常量与变量分别是( )
A.2是常量,C、π、R是变量B.2π是常量,C,R是变量
C.C、2是常量,R是变量D.2是常量,C、R是变量
3、(4分)多项式与的公因式是( )
A.B.C.D.
4、(4分)如图,已知中,,,将绕点顺时针方向旋转到的位置,连接,则的长为( )
A.B.C.D.
5、(4分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于( )
A.cmB.2cmC.3cmD.4cm
6、(4分)某居民小区10户家庭5月份的用水情况统计结果如表所示:这10户家庭的月平均用水量是( )
A.2m3 B.3.2m3 C.5.8m3 D.6.4m3
7、(4分)点M(﹣3,y1),N(﹣2,y2)是抛物线 y=﹣(x+1)2+3上的两点,则下列大小关系正确的是( )
A.y1<y2<3B.3<y1<y2C.y2<y1<3D.3<y2<y1
8、(4分)如图,在矩形ABCD中,AB=6,AD=8,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )
A.8B.9C.10D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,菱形ABCD的对角线AC=3cm,BD=4cm,则菱形ABCD的面积是_____.
10、(4分)如图,菱形的边长为1,;作于点,以为一边,作第二个菱形,使;作于点,以为一边,作第三个菱形,使;…依此类推,这样作出第个菱形.则_________. _________.
11、(4分)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为 .
12、(4分)已知,则的值是_____________.
13、(4分)当m=_____时,x2+2(m﹣3)x+25是完全平方式.
三、解答题(本大题共5个小题,共48分)
14、(12分)重庆不仅是网红城市,更是拥有长安,力帆等大型车企的一座汽车城,为了更好的推广和销售汽车,每年都会在悦来会展中心举办大型车展.去年该车展期间大众旗下两品牌汽车迈腾和途观L共计销售240辆,迈腾销售均价为每辆20万元,途观L销售均价为每辆30万元,两种车型去年车展期间销售额共计5600万元.
(1)这两种车型在去年车展期间各销售了多少辆?
(2)在今年的该车展上,各大汽车经销商纷纷采取降价促销手段,而途观L坚持不降价,与去年相比,销售均价不变,销量比去年车展期间减少了a%,而迈腾销售均价比去年降低了a%,销量较去年增加了2a%,两种车型今年车展期间销售总额与去年相同,求a的值.
15、(8分)如图,在平面直角坐标系中,直线与轴、轴分别交于,两点.
(1)反比例函数的图象与直线交于第一象限内的,两点,当时,求的值;
(2)设线段的中点为,过作轴的垂线,垂足为点,交反比例函数的图象于点,连接,,当以,,为顶点的三角形与以,,为顶点的三角形相似时,求的值.
16、(8分)在正方形中,是对角线上的点,连接、.
(1)求证:;
(2)如果,求的度数.
17、(10分)某公司购进某种矿石原料300吨,用于生产甲、乙两种产品,生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:
生产1吨甲产品所需成本费用为4000元,每吨售价4600元;
生产1吨乙产品所需成本费用为4500元,每吨售价5500元,
现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.
(1)写出m与x之间的关系式
(2)写出y与x之间的函数表达式,并写出自变量的范围
(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大,最大利润是多少?
18、(10分)某市教委为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,启动了“学生阳光体育运动”,其中有一项是短跑运动,短跑运动可以锻炼人的灵活性,增强人的爆发力,因此张明和李亮在课外活动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:
成绩统计分析表
(1)张明第2次的成绩为__________秒;
(2)请补充完整上面的成绩统计分析表;
(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁? 请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一元二次方程有两个不相等的实数根,则k的取值范围是 .
20、(4分)如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为______.
21、(4分)若关于x的一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.
22、(4分)如图,将一个智屏手机抽象成一个的矩形,其中,,然后将它围绕顶点逆时针旋转一周,旋转过程中、、、的对应点依次为、、、,则当为直角三角形时,若旋转角为,则的大小为______.
23、(4分)在菱形中,,若菱形的面积是 ,则=____________
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,AD是△ABC边BC上的高,用尺规在线段AD上找一点E,使E到AB的距离等于ED(不写作法,保留作图痕迹)
25、(10分)如图,G是线段AB上一点,AC和DG相交于点E.
(1)请先作出∠ABC的平分线BF,交AC于点F;(尺规作图,保留作图痕迹,不写作法与证明)
(2)然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.
26、(12分)益民商店经销某种商品,进价为每件80元,商店销售该商品每件售价高干8元且不超过120元若售价定为每件120元时,每天可销售200件,市场调查反映:该商品售价在120元的基础上,每降价1元,每天可多销售10件,设该商品的售价为元,每天销售该商品的数量为件.
(1)求与之间的函数关系式;
(2)商店在销售该商品时,除成本外每天还需支付其余各种费用1000元,益民商店在某一天销售该商品时共获利8000元,求这一天该商品的售价为多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据四边形对角线相等且互相垂直,运用三角形中位线平行于第三边证明四个角都是直角且邻边相等,判断是正方形
【详解】
解:如图:
∵E、F、G、H分别为各边中点,
∴EF∥GH∥DB,EF=GH=DB,
EH=FG=AC,EH∥FG∥AC,
∴四边形EFGH是平行四边形,
∵DB⊥AC,
∴EF⊥EH,
∴四边形EFGH是矩形.
同理可证EH=AC,
∵AC=BD,
∴EH=EF
∴矩形EFGH是正方形,
故选:D.
本题考查的是中点四边形,解题时,主要是利用了三角形中位线定理的性质,比较简单,也可以利用三角形的相似,得出正确结论.
2、B
【解析】
根据变量常量的定义在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可求解.
【详解】
在圆的周长公式中中,C与r是改变的,π是不变的;
所以变量是C,R,常量是2π.
故答案选B
本题考查了变量与常量的知识,属于基础题,正确理解变量与常量的概念是解题的关键.
3、B
【解析】
直接将原式分别分解因式,进而得出公因式即可.
【详解】
解:∵a2-21=(a+1)(a-1),a2-1a=a(a-1),
∴多项式a2-21与a2-1a的公因式是a-1.
故选:B.
此题主要考查了公因式,正确将原式分解因式是解题的关键.
4、B
【解析】
连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.
【详解】
解:如图,连接BB′,
∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,
∴AB=AB′,∠BAB′=60°,
∴△ABB′是等边三角形,
∴AB=BB′,
在△ABC′和△B′BC′中,
,
∴△ABC′≌△B′BC′(SSS),
∴∠ABC′=∠B′BC′,
延长BC′交AB′于D,
则BD⊥AB′,
∵∠C=90°,,
∴AB= =4,
∴BD= ,
C′D=2,
∴BC′=BD-C′D=.
故选B.
本题考查旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键.
5、C
【解析】
根据在直角三角形中,30度角所对直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.
【详解】
∵ED⊥AB,∠A=30°,∴AE=2ED.
∵AE=6cm,∴ED=3cm.
∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.
故选C.
本题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度角所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.
6、C
【解析】
把已知数据代入平均数公式求平均数即可.
【详解】
月平均用水量=
故答案为:C.
此题主要考查加权平均数的求解,解题的关键是熟知加权平均数的定义与公式.
7、A
【解析】
根据抛物线的性质,抛物线上的点离对称轴越远,对应的函数值就越小,点(-1,3)在对称轴上,即可得到答案.
【详解】
抛物线的解析式y=﹣(x+1)2+3可得其对称轴为x=-1,系数a<0,图像开口下下,
根据抛物线上的点离对称轴越远,对应的函数值就越小,点(-1,3)在对称轴上,-3<-2
所以y1<y2<3.
故选A.
8、B
【解析】
取BC中点O,连接OE,OF,根据矩形的性质可求OC,CF的长,根据勾股定理可求OF的长,根据直角三角形的性质可求OE的长,根据三角形三边关系可求得当点O,点E,点F共线时,EF有最大值,即EF=OE+OF.
【详解】
解:如图,取BC中点O,连接OE,OF,
∵四边形ABCD是矩形,
∴AB=CD=6,AD=BC=8,∠C=10°,
∵点F是CD中点,点O是BC的中点,
∴CF=3,CO=4,
∴OF==5,
∵点O是Rt△BCE的斜边BC的中点,
∴OE=OC=4,
∵根据三角形三边关系可得:OE+OF≥EF,
∴当点O,点E,点F共线时,EF最大值为OE+OF=4+5=1.
故选:B.
本题考查了矩形的性质,三角形三边关系,勾股定理,直角三角形的性质,找到当点O,点E,点F共线时,EF有最大值是本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、11cm1
【解析】
利用菱形的面积公式可求解.
【详解】
解:因为菱形的对角线互相垂直平分,
∵AC=cm,BD=cm,
则菱形ABCD的面积是cm1.
故答案为11cm1.
此题主要考查菱形的面积计算,关键是掌握菱形的面积计算方法.
10、
【解析】
在△AB1D2中利用30°角的性质和勾股定理计算出AD2=,再根据菱形的性质得AB2=AD2=,同理可求AD3和 AD4的值.
【详解】
解:在△AB1D2中,
∵,
∴∠B1AD2=30°,
∴B1D2=,
∴AD2==,
∵四边形AB2C2D2为菱形,
∴AB2=AD2=,
在△AB2D3中,
∵,
∴∠B2AD3=30°,
∴B2D3=,
∴AD3== ,
∵四边形AB3C3D3为菱形,
∴AB3=AD3=,
在△AB3D4中,
∵,
∴∠B3AD4=30°,
∴B3D4=,
∴AD4==,
故答案为,.
本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.菱形的面积等于对角线乘积的一半.也考查了锐角三角函数的知识.
11、1.
【解析】
∵,
∴=0,b-2=0,解得a=3,b=2.
∵直角三角形的两直角边长为a、b,
∴该直角三角形的斜边长=.
12、7
【解析】
把已知条件两个平方,根据完全平方公式展开整理即可得解;
【详解】
解:;
本题考查了完全平方公式的运用,熟练掌握公式的特点是解题的关键
13、8或﹣1
【解析】
先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.
【详解】
解:∵x1+1(m﹣3)x+15=x1+1(m﹣3)x+51,
∴1(m﹣3)x=±1×5x,
m﹣3=5或m﹣3=﹣5,
解得m=8或m=﹣1.
故答案为:8或﹣1.
本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.
三、解答题(本大题共5个小题,共48分)
14、(1)去年车展期间迈腾销售了160辆,途观L销售了80辆;(2)a的值为12.1.
【解析】
(1)设去年车展期间迈腾销售了x辆,途观L销售了y辆,然后根据题意列出二元一次方程组,解方程组即可;
(2)根据题意,分别利用销售额=销售单价×销售量计算出迈腾和途观今年的销售额,然后列出方程,解方程即可.
【详解】
(1)设去年车展期间迈腾销售了x辆,途观L销售了y辆,
依题意得: 解得 ,
答:去年车展期间迈腾销售了160辆,途观L销售了80辆.
(2)依题意,得:20(1﹣a%)×160(1+2a%)+30×80(1﹣a%)=1600,
整理得:8a﹣0.64a2=0,
解得:a1=12.1,a2=0(舍去).
答:a的值为12.1.
本题主要考查二元一次方程组的应用及一元一次方程的应用,读懂题意列出方程及方程组是解题的关键.
15、(1);(2)或.
【解析】
(1)如图作DH⊥OA于H.由DH∥OB,可得,由此求出点D坐标,即可解决问题;
(2)如图2中,观察图象可知满足条件的点Q在点P的下方.分两种情形①当△QOP∽△POB时,②当△OPQ′∽△POB时,分别求出点Q、Q′的坐标即可解决问题;
【详解】
解:(1)如图作于.
∵直线与轴、轴分别交于,两点,
∴,,
∴,,
∵,
∴,
∴,,
∴,
∴,
∵点在上,
∴.
(2)如图2中,观察图象可知满足条件的点在点的下方.
①当时,,
∴,
∴,
∴,
∵点在上,
∴.
②当时,同法可得,
∵点在上,
∴.
本题考查反比例函数综合题、平行线分线段成比例定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会用分类讨论的首先思考问题,属于中考压轴题.
16、 (1)详见解析;(2)
【解析】
(1)证明△ABP≌△ADP,可得BP=DP;
(2)证得∠ABP=∠APB,由∠BAP=45°可得出∠ABP=67.5°.
【详解】
证明:(1)四边形是正方形,
,,
在和中
,
,
,
(2),
,
又,
.
本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练运用图形的性质证明问题.
17、(1)m=75-2.5x;(2)y=-1900x+75000(0≤x≤30);(3)生产甲产品25吨时,公司获得的总利润最大,最大利润是27500元.
【解析】
(1)∵生产甲产品x吨,则用矿石原料10x吨.∴生产乙产品用矿石原料为(300-10x)吨,由此得出;
(2)先求出生产1吨甲、乙两种产品各获利多少,然后可求出获得的总利润.
(3)由于总利润y是x的一次函数,先求出x的取值范围,再根据一次函数的增减性,求得最大利润.
【详解】
(1)m与x之间的关系式为
(2)生产1吨甲产品获利:4600-4000=600
生产1吨乙产品获利:5500-4500=1000
y与x的函数表达式为:(0≤x≤30)
(3)根据题意列出不等式
解得x≥25
又∵0≤x≤30
∴25≤x≤30
∵y与x的函数表达式为:y=-1900x+75000
y随x的增大而减小,
∴当生产甲产品25吨时,公司获得的总利润最大
y最大=-1900×25+75000=27500(元).
本题考查的知识点是用函数的知识解决实际问题,解题关键是注意自变量的取值范围还必须使实际问题有意义.
18、(1)13.4;(2)13.3 ,13.3;(3)选择张明
【解析】
根据折线统计图写出答案即可
根据已知条件求得中位数及平均线即可,中数是按顺序排列的一组数据中居于中间位置的数,平均数是指在一组数据中所有数据之和再除以数据的个数.
根据平均线一样,而张明的方差较稳定,所以选择张明.
【详解】
(1)根据折线统计图写出答案即可,即13.4;
(2)中数是按顺序排列的一组数据中居于中间位置的数,即是13.3 ,平均数是指在一组数据中所有数据之和再除以数据的个数.即(13.2+13.4+13.1+13.5+13.3)5=13.3;
(3)选择张明参加比赛.理由如下:
因为张明和李亮成绩的平均数、中位数都相同,但张明成绩的方差小于李亮成绩的方差,张明的成绩较稳定,所以应该选择张明参加比赛.
本题考查平均数、中位数和方差,熟练掌握计算法则和它们的性质是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、:k<1.
【解析】
∵一元二次方程有两个不相等的实数根,
∴△==4﹣4k>0,
解得:k<1,
则k的取值范围是:k<1.
故答案为k<1.
20、75°
【解析】
根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.
【详解】
∵∠ACB=90°,
∴∠MCD=90°,
∵∠D=60°,
∴∠DMC=30°,
∴∠AMF=∠DMC=30°,
∵∠A=45°,
∴∠1=∠A+∠AMF=45°+30°=75°,
故选:C.
本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF的度数.
21、
【解析】
根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.
【详解】
解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,
∴ ,
整理得, ,
∴
当时,
故答案为:.
本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.
22、或或
【解析】
根据题中得到∠ADE=30°,则∠DAE=60°;这是有两种情况,一种AE在AD的左侧,一种AE在AD的右侧;另外,当旋转180°,AE和AB共线时,∠EAD=90°,△ADE也是直角三角形.
【详解】
解:要使△ADE为直角三角形,由于AE=8,AD=16,即只需满足∠ADE=30°即可.
当∠DAE=30°,则∠DAE=60°
当AE在AD的右侧时,旋转了30°;
当AE在AD的左侧,即和BA的延长线的夹角为30°,即旋转了150°.
另外,当旋转到AE和AB延长线重合时,∠DAE=90°,三角形ADE也是直角三角形;
所以答案为:或或
本题考查了旋转和直角三角形的相关知识,其中对旋转过程中出现直角的讨论是解答本题的关键.
23、
【解析】
由菱形的性质得AO=CO=6cm,BO=DO,AC⊥BD,由菱形的面积可求BD的长,由勾股定理可求AB的长.
【详解】
解:如图,
∵四边形ABCD是菱形
∴AO=CO=6cm,BO=DO,AC⊥BD
∵S菱形ABCD=×AC×BD=96
∴BD=16cm
∴BO=DO=8cm
∴AB==10cm
故答案为10cm
本题考查了菱形的性质,掌握菱形的面积公式是解决本题的关键.
二、解答题(本大题共3个小题,共30分)
24、见解析.
【解析】
利用基本作图,作∠ABD的平分线交AD于E,则E到AB的距离等于ED.
【详解】
如图,点E为所作.
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
25、(1)见解析;(2)见解析.
【解析】
(1)根据角平分线的作图方法作图即可;
(2)由题意易证△ADE≌△CBF推出DE=BF.
【详解】
(1)解:以B为圆心、适当长为半径画弧,交AB、BC于M、N两点,分别以M、N为圆心、大于MN长为半径画弧,两弧相交于点P,过B、P作射线BF交AC于F.
(2)证明如下:∵AD∥BC,∴∠DAC=∠C.
∵BF平分∠ABC,∴∠ABC=2∠FBC,
又∵∠ABC=2∠ADG,∴∠D=∠FBC,
在△ADE与△CBF中,,
∴△ADE≌△CBF(ASA),
∴DE=BF.
本题考查的是全等三角形的判定定理以及基本作图的有关知识,难度一般.
26、(1)y=−10x+1400;(2)这一天的销售单价为110元.
【解析】
(1)首先利用当售价定为每件120元时每天可售出200件,该商品销售单价在120元的基础上,每降1元,每天可多售出10件,进而求出每天可表示出销售商品数量;
(2)设商场日盈利达到8000元时,每件商品售价为x元,根据每件商品的盈利×销售的件数=商场的日盈利,列方程求解即可.
【详解】
解:(1)由题意得:y=200+10(120−x)=−10x+1400;
∴y=−10x+1400;
(2)由题意可得:
(−10x+1400)(x−80)−1000=8000,
整理得:x2−220x+12100=0,
解得:x1=x2=110,
答:这一天的销售单价为110元.
此题主要考查了一次函数的应用以及一元二次方程的应用,正确得出y与x的关系式是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
月用水量/m3
4
5
6
8
9
户数
2
3
3
1
1
产品资源
甲
乙
矿石(吨)
10
4
煤(吨)
4
8
相关试卷
这是一份甘肃省定西安定区七校联考2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份甘肃省白银市育才中学2024-2025学年数学九上开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届甘肃省酒泉市肃州中学九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。