开学活动
搜索
    上传资料 赚现金

    甘肃省武威第十七中学2025届九年级数学第一学期开学学业水平测试试题【含答案】

    甘肃省武威第十七中学2025届九年级数学第一学期开学学业水平测试试题【含答案】第1页
    甘肃省武威第十七中学2025届九年级数学第一学期开学学业水平测试试题【含答案】第2页
    甘肃省武威第十七中学2025届九年级数学第一学期开学学业水平测试试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    甘肃省武威第十七中学2025届九年级数学第一学期开学学业水平测试试题【含答案】

    展开

    这是一份甘肃省武威第十七中学2025届九年级数学第一学期开学学业水平测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知△ABC,AB=5,BC=12,AC=13,点P是AC上一个动点,则线段BP长的最小值是( )
    A.B.5C.D.12
    2、(4分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=20,CE=15,CF=7,AF=24,则BE的长为( )
    A.10B.C.15D.
    3、(4分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是( )
    A.80°B.120°C.100°D.90°
    4、(4分)如图,在平面直角坐标系中,是反比例函数 图象上一点,是轴正半轴上一点,以,为邻边作,若点及中点都在反比例函数图象上,则的值为( )
    A.B.C.D.
    5、(4分)某校规定学生的数学学期评定成绩满分为100,其中平时成绩占50%,期中考试成绩占20%,期末考试成绩占30%.小红的三项成绩(百分制)依次是86、70、90,小红这学期的数学学期评定成绩是( )
    A.90B.86C.84D.82
    6、(4分)如图,一次函数y=kx+b的图象经过点A(1,0),B(2,1),当因变量y>0时,自变量x的取值范围是( )
    A.x>0B.x<0C.x>1D.x<1
    7、(4分)一次函数y=﹣x+2的图象不经过的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    8、(4分)如图是由四个全等的直角三角形拼接而成的图形,其中,,则的长是( )
    A.7B.8C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若不等式组的解集是,则m的值是________.
    10、(4分)已知+=0,则(a﹣b)2的平方根是_____.
    11、(4分)张老师公布班上6名同学的数学竞赛成绩时,有意公布了5个人的得分:78,92,61,85,75,又公布了6个人的平均分:80,还有一个未公布,这个未公布的得分是_____.
    12、(4分)已知反比例函数的图象经过点,则b的值为______.
    13、(4分)工人师傅在做门窗或矩形零件时,不仅要测量两组对边的长度是否相等,常常还要测量它们的两条对角线是否相等,以确保图形是矩形.这依据的道理是:_______________________________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者接受并购买新能源汽车。我市某品牌新能源汽车经销商1月至3月份统计,该品牌汽车1月份销售150辆,3月份销售216辆.
    (1)求该品牌新能源汽车销售量的月均增长率;
    (2)若该品牌新能源汽车的进价为52000元,售价为58000元,则该经销商1月至3月份共盈利多少元?
    15、(8分)李师傅去年开了一家商店.今年1月份开始盈利,2月份盈利3000元,4月份的盈利达到4320元,且从2月到4月,每月盈利的平均增长率都相同.
    (1)求每月盈利的平均增长率;
    (2)按照这个平均增长率,预计5月份这家商店的盈利可达到多少元?
    16、(8分)如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45∘.
    (1)求直线BC的解析式;
    (2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;
    17、(10分)某经销商从市场得知如下信息:
    他计划一次性购进这两种品牌计算器共100台(其中A品牌计算器不能超过50台),设该经销商购进A品牌计算器x台(x为整数),这两种品牌计算器全部销售完后获得利润为y元.
    (1)求y与x之间的函数关系式;
    (2)若要求A品牌计算器不得少于48台,求该经销商有哪几种进货方案?
    (3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?
    18、(10分)解不等式组,把解集表示在数轴上并写出该不等式组的所有整数解.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=__________.
    20、(4分)如图是一块地的平面示意图,已知AD=4 m,CD=3 m,AB=13 m,BC=12 m,∠ADC=90°,则这块地的面积为_____m2.
    21、(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=6,BD=8,若DE∥AC,CE∥BD,则OE的长为_____.
    22、(4分)使为整数的的值可以是________(只需填一个).
    23、(4分)飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s60t1.5t2,则飞机着陆后滑行直到停下来滑行了__________米.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF,
    (1)观察猜想
    如图1,当点D在线段BC上时,
    ①BC与CF的位置关系为: .
    ②BC,CD,CF之间的数量关系为: ;(将结论直接写在横线上)
    (2)数学思考
    如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
    (3)拓展延伸
    如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE,若已知AB=2,CD=BC,请求出GE的长.
    25、(10分)如图,平行四边形ABCD中,AE=CE.
    (1)用尺规或只用无刻度的直尺作出的角平分线,保留作图痕迹,不需要写作法.
    (2)设的角平分线交边AD于点F,连接CF,求证:四边形AECF为菱形.
    26、(12分)求不等式组的整数解.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    解:∵AB=5,BC=12,AC=13,∴AB2+BC2=169=AC2,∴△ABC是直角三角形,当BP⊥AC时,BP最小,∴线段BP长的最小值是:13BP=5×12,解得:BP=.故选A.
    点睛:本题主要考查勾股定理的逆定理以及直角三角形面积求法,关键是熟练运用勾股定理的逆定理进行分析.
    2、C
    【解析】
    分析:根据平行四边形的面积,可得设 则在Rt中,用勾股定理即可解得.
    详解:∵四边形ABCD是平行四边形,


    设 则
    在Rt中,

    解得(舍去),

    故选C.
    点睛:考查了平行四边形的面积,平行四边形的性质,勾股定理等,难度较大,根据面积得出是解题的关键.
    3、B
    【解析】
    【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理进行解答即可.
    【详解】∵四边形ABCD为⊙O的内接四边形,
    ∴∠A=180°﹣∠BCD=180°-120°=60°,
    由圆周角定理得,∠BOD=2∠A=120°,
    故选B.
    【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
    4、D
    【解析】
    设A(a,),B(0,m),再根据题意列出反比例函数计算解答即可.
    【详解】
    设A(a,),B(0,m)
    OB的中点坐标为(0,),
    以OA,AB为邻边作四边形ABCD,
    则AC的中点坐标为(0,),
    点C的坐标为(-a,m-)
    点C及BC中点D都在反比例函数图像上
    点D的坐标为(-a,m-)
    k=-a(m-)=
    解得am=18,k=-6
    故选D
    本题考查反比例函数,熟练掌握计算法则是解题关键.
    5、C
    【解析】
    根据加权平均数的计算方法列出算式,再进行计算即可得出答案.
    【详解】
    解:小红这学期的数学学期评定成绩是:86×50%+70×20%+90×30%=84(分);
    故选:C.
    本题考查的是加权平均数的求法.熟记公式是解决本题的关键.
    6、C
    【解析】
    由一次函数图象与x轴的交点坐标结合函数图象,即可得出:当x>1时,y>1,此题得解.
    【详解】
    解:观察函数图象,可知:当x>1时,y>1.
    故选:C.
    本题考查了一次函数图象上点的坐标特征、一次函数的图象以及一次函数的性质,观察函数图象,利用数形结合解决问题是解题的关键.
    7、C
    【解析】
    根据一次函数的系数确定函数图象经过的象限,由此即可得出结论.
    【详解】
    ∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限,不经过第三象限.
    故选C.
    本题考查了一次函数图象与系数的关系.解答本类型题目时,根据函数系数的正负确定函数图象经过的象限是关键.
    8、C
    【解析】
    由图易知EG与FG的长,然后根据勾股定理即可求出EF的长.
    【详解】
    解:如图,由题意可知:AE=BG=FC=5,BE=CG=12,
    ∴EG=BE-BG=12-5=7,FG=CG-FC=12-5=7,
    ∴在Rt△EGF中,EF==7.
    故选C.
    本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2
    【解析】
    分别求出每个不等式的解集,取共同部分,即可得到m的值.
    【详解】
    解:,解得:,
    ∵不等式组的解集为:,
    ∴;
    故答案为:2.
    本题考查了由不等式组的解集求参数,解题的关键是根据不等式组的解集求参数.
    10、±1.
    【解析】
    根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.
    【详解】
    根据题意得a-1=2,且b-5=2,
    解得:a=1,b=5,
    则(a-b)2=16,则平方根是:±1.
    故答案是:±1.
    本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.
    11、1.
    【解析】
    首先设这个未公布的得分是x,根据算术平均数公式可得关于x的方程,解方程即可求得答案.
    【详解】
    设这个未公布的得分是x,
    则:,
    解得:x=1,
    故答案为:1.
    本题考查了算术平均数,关键是掌握对于n个数x1,x2,…,xn,则就叫做这n个数的算术平均数.
    12、-1
    【解析】
    将点的坐标代入反比例函数解析式即可解答.
    【详解】
    把点(-1,b)代入y=,得b==-1.
    故答案是:-1.
    考查了反比例函数图象上点的坐标特征.函数图象上所有点的坐标均满足该函数解析式.
    13、对角线相等的平行四边形是矩形.
    【解析】
    根据已知条件和矩形的判定定理(对角线相等的平行四边形为矩形)解答即可.
    【详解】
    解:∵门窗所构成的形状是矩形,
    ∴根据矩形的判定(对角线相等的平行四边形为矩形)可得出.
    故答案为:对角线相等的平行四边形是矩形.
    本题主要考查矩形的判定定理:对角线相等的平行四边形为矩形,熟练掌握矩形的判定定理是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)该品牌新能源汽车销售量的月均增长率为;(2)盈利3276000元.
    【解析】
    (1)设该品牌电动自行车销售量的月均增长率为x.等量关系为:1月份的销售量×(1+增长率)2=3月份的销售量,把相关数值代入求解即可.
    (2)根据(1)求出增长率后,再计算出二月份的销量,即可得到答案.
    【详解】
    (1)设该品牌新能源汽车销售量的月均增长率x,根据题意列方程
    解得,(舍去)
    (2)
    答:(1)该品牌新能源汽车销售量的月均增长率为;(2)共盈利3276000元.
    此题考查一元二次方程的应用,解题关键在于根据题意列出方程.
    15、(1)该商店的每月盈利的平均增长率为20%.(2)5月份盈利为5184元.
    【解析】
    (1)设该商店的月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.
    (2)5月份盈利=4月份盈利×增长率.
    【详解】
    (1)设该商店的每月盈利的平均增长率为x,根据题意得:
    3000(1+x)2=4320,
    解得:x1=20%,x2=-2.2(舍去).
    (2)由(1)知,该商店的每月盈利的平均增长率为20%,则5月份盈利为:
    4320×(1+20%)=5184(元).
    答:(1)该商店的每月盈利的平均增长率为20%.
    (2)5月份盈利为5184元.
    此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用-,难度一般.
    16、 (1) BC的解析式是y=−x+3;(2)当02时,S=3t−6.
    【解析】
    (1)令y=0,即可求得A的坐标,根据OC=3OA即可求得C的坐标,再根据∠CBA=45°,即△BOC的等腰直角三角形,则B的坐标即可求得,然后利用待定系数法求得BC的解析式;
    (2)分成P在AB和在AB的延长线上两种情况进行讨论,利用三角形面积公式即可求解.
    【详解】
    (1)在y=kx+k中,令y=0,则x=−1,即A的坐标是(−1,0).
    ∵OC=3OA,
    ∴OC=3,即C的坐标是(0,3).
    ∵∠CBA=45∘,
    ∴∠OCB=∠CBA=45∘,
    ∴OB=OC=3,则B的坐标是(3,0).
    设BC的解析式是y=kx+b,则,
    解得:,
    则BC的解析式是y=−x+3;
    (2)当02时,OP=2t−4,则S=×3(2t−4),即S=3t−6.
    本题考查一次函数综合,解题的关键是掌握待定系数法求解析式.
    17、 (1)y=140x+1;(2)三种方案,见解析;(3)选择A50台、B50台的进货方案,经销商可获利最大,最大利润是13000元.
    【解析】
    (1)根据利润=售价-成本,总利润=单位利润×销售量,可以求出y与x之间的函数关系式;
    (2)A品牌计算器不能超过50台,A品牌计算器不得少于48台,确定自变量的取值范围,再由自变量是整数,可得由几种方案;
    (3)根据一次函数的增减性,和自变量的取值范围,确定何时利润最大,并求出最大利润.
    【详解】
    (1)y=(900-700)x+(160-100)(100-x)=140x+1,
    答:y与x之间的函数关系式为:y=140x+1.
    (2)由题意得:48≤x≤50
    x为整数,因此x=48或x=49或x=50,
    故有三种进货方案,即:①A48台、B52台;②A49台、B51台;③A50台、B50台;
    (3)∵y=140x+1,k=140>0,
    ∴y随x的增大而增大,
    ∵又48≤x≤50的整数
    ∴当x=50时,y最大=140×50+1=13000元
    答:选择A50台、B50台的进货方案,经销商可获利最大,最大利润是13000元.
    考查一次函数的图象和性质、一元一次不等式组的解法以及不等式组的整数解等知识,联系实际、方案实际经常用到不等式的整数解,根据整数解的个数,确定方案数.
    18、﹣1、﹣1、0、1、1.
    【解析】
    根据不等式组的计算方法,首先单个计算不等式,在采用数轴的方法,求解不等式组即可.
    【详解】
    解:
    解不等式(1)得:x<3,
    解不等式(1)得:x≥﹣1,
    它的解集在数轴上表示为:
    ∴原不等式组的解集为:﹣1≤x<3,
    ∴不等式组的整数解为:﹣1、﹣1、0、1、1.
    本题主要考查不等式组的整数解,关键在于数轴上等号的表示.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3
    【解析】
    由矩形的性质可得AB=CD=6,再由折叠的性质可得AE=AB=6, 在Rt△ADE中,根据勾股定理求得AD的长即可.
    【详解】
    ∵纸片ABCD为矩形,
    ∴AB=CD=6,
    ∵矩形纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,
    ∴AE=AB=6,
    ∵E为DC的中点,
    ∴DE=3,
    在Rt△ADE中,AE=6,DE=3,
    由勾股定理可得,AD=
    故答案为:.
    本题考查了矩形的性质、折叠的性质及勾股定理,正确求得AE=6、DE=3是解决问题的关键.
    20、1
    【解析】
    试题解析:连接AC,
    ∵AD=4m,CD=3m,∠ADC=90°,
    ∴AC===5,
    ∵AB=13m,BC=12m,
    ∴AB2=BC2+CD2,即△ABC为直角三角形,
    ∴这块地的面积为S△ABC-S△ACD=AC•BC-AD•CD=×5×12-×3×4=1.
    21、1
    【解析】
    根据菱形的性质得出AC⊥BD,由勾股定理可求AD=CD=1,再根据平行四边形的判定定理得四边形OCED为平行四边形,由矩形的判定定理得出四边形OCED是矩形,则该矩形的对角线相等,即CD=OE=1.
    【详解】
    证明:∵四边形ABCD为菱形,
    ∴AC⊥BD,OA=AC=3,OD=BD=4,
    ∴∠AOD=90°,
    ∴AD==1=CD
    ∵DE∥AC,CE∥BD
    ∴四边形OCED为平行四边形,
    又∵AC⊥BD
    ∴四边形OCED为矩形
    ∴CD=OE=1
    故答案为:1
    本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
    22、1.
    【解析】
    根据=1填上即可.
    【详解】
    使为整数的x的值可以是1,
    故答案为1.
    本题考查了实数,能理解算术平方根的意义是解此题的关键,此题答案比唯一,如还有5、﹣3、﹣10等.
    23、1
    【解析】
    将化为顶点式,即可求得s的最大值.
    【详解】
    解:,
    则当时,取得最大值,此时,
    故飞机着陆后滑行到停下来滑行的距离为:.
    故答案为:1.
    本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,会将二次函数的一般式化为顶点式,根据顶点式求函数的最值.
    二、解答题(本大题共3个小题,共30分)
    24、(1)CF⊥BD,BC=CF+CD;(2)成立,证明详见解析;(3).
    【解析】
    试题分析:(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论(3)根据等腰直角三角形的性质得到BC=AB=4,AH=BC=2,求得DH=3,根据正方形的性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM=CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论.
    试题解析:解:(1)①正方形ADEF中,AD=AF,
    ∵∠BAC=∠DAF=90°,
    ∴∠BAD=∠CAF,
    在△DAB与△FAC中,,
    ∴△DAB≌△FAC,
    ∴∠B=∠ACF,
    ∴∠ACB+∠ACF=90°,即CF⊥BD;
    ②△DAB≌△FAC,
    ∴CF=BD,
    ∵BC=BD+CD,
    ∴BC=CF+CD;
    (2)成立,
    ∵正方形ADEF中,AD=AF,
    ∵∠BAC=∠DAF=90°,
    ∴∠BAD=∠CAF,
    在△DAB与△FAC中,,
    ∴△DAB≌△FAC,
    ∴∠B=∠ACF,CF=BD
    ∴∠ACB+∠ACF=90°,即CF⊥BD;
    ∵BC=BD+CD,
    ∴BC=CF+CD;
    (3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,
    ∵∠BAC=90°,AB=AC,
    ∴BC=AB=4,AH=BC=2,
    ∴CD=BC=1,CH=BC=2,
    ∴DH=3,
    由(2)证得BC⊥CF,CF=BD=5,
    ∵四边形ADEF是正方形,
    ∴AD=DE,∠ADE=90°,
    ∵BC⊥CF,EM⊥BD,EN⊥CF,
    ∴四边形CMEN是矩形,
    ∴NE=CM,EM=CN,
    ∵∠AHD=∠ADC=∠EMD=90°,
    ∴∠ADH+∠EDM=∠EDM+∠DEM=90°,
    ∴∠ADH=∠DEM,
    在△ADH与△DEM中,,
    ∴△ADH≌△DEM,
    ∴EM=DH=3,DM=AH=2,
    ∴CN=EM=3,EN=CM=3,
    ∵∠ABC=45°,
    ∴∠BGC=45°,
    ∴△BCG是等腰直角三角形,
    ∴CG=BC=4,
    ∴GN=1,
    ∴EG==.
    考点:四边形综合题.
    25、(1)见详解;(2)见解析.
    【解析】
    (1)只用无刻度直尺作图过程如下:①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;
    (2)先根据AF=EC,AF∥CE,判定四边形AECF是平行四边形,再根据AE=EC,即可得出平行四边形AECF是菱形.
    【详解】
    解:(1)如图所示,EO为∠AEC的角平分线;
    (2)∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠AFE=∠FEC,
    又∵∠AEF=∠CEF,
    ∴∠AEF=∠AFE,
    ∴AE=AF,
    ∴AF=EC,
    ∴四边形AECF是平行四边形,
    又∵AE=EC,
    ∴平行四边形AECF是菱形.
    本题主要考查了平行四边形的性质以及菱形的判定,解题时注意:一组邻边相等的平行四边形是菱形.
    26、-1、-1、0、1 、1.
    【解析】
    试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).最后求出整数解.
    试题解析:
    解不等式①,得,
    解不等式②,得,
    ∴不等式组的解集为.
    ∴不等式组的整数解为-1、-1、0、1、1.
    考点:解一元一次不等式组.
    题号





    总分
    得分
    A品牌计算器
    B品牌计算器
    进价(元/台)
    700
    100
    售价(元/台)
    900
    160

    相关试卷

    甘肃省庆阳市第九中学2024年九年级数学第一学期开学学业水平测试模拟试题【含答案】:

    这是一份甘肃省庆阳市第九中学2024年九年级数学第一学期开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届甘肃省武威市第十七中学数学九上开学预测试题【含答案】:

    这是一份2025届甘肃省武威市第十七中学数学九上开学预测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届甘肃省武威第九中学九上数学开学学业质量监测试题【含答案】:

    这是一份2025届甘肃省武威第九中学九上数学开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map