甘肃省武威市2024年九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)反比例函数y=- 的图象经过点(a,b),(a-1,c),若a<0,则b与c的大小关系是( )
A.b>c B.b=c C.b<c D.不能确定
2、(4分)关于的一元二次方程有两个实数根,则的取值范围是( )
A.B.C.且D.且
3、(4分)如图所示是根据某班级名同学一周的体育锻炼情况绘制的统计图,由图像可知该班同学一周参加体育锻炼时间的中位数,众数分别是( )
A.,
B.,
C.,
D.,
4、(4分)点P(-2,3)关于y轴的对称点的坐标是( )
A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)
5、(4分)四边形ABCD的对角线AC与BD相等且互相垂直,则顺次连接这个四边形四边的中点得到四边形是( )
A.平行四边形B.矩形C.菱形D.正方形
6、(4分)反比例函数y=在第一象限的图象如图所示,则k的值可能是( )
A.1B.2C.3D.4
7、(4分)一组数据的众数、中位数分别是( )
A.B.C.D.
8、(4分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )
A.众数B.方差C.平均数D.中位数
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)你喜欢足球吗?下面是对耒阳市某校八年级学生的调查结果:
则男同学中喜欢足球的人数占全体同学的百分比是________.
10、(4分)如图,AB∥CD,E、F分别是AC、BD的中点,若AB=5,CD=3,则EF的长为______________.
11、(4分)两个面积都为的正方形纸片,其中一个正方形的顶点与另一个正方形对角线的交点重合,则两个正方形纸片重叠部分的面积为__________.
12、(4分)观察下列各式:,,,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.
13、(4分)在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是______(填写所有正确结论的序号).
三、解答题(本大题共5个小题,共48分)
14、(12分)已知关于x、y的方程组的解满足不等式组.求满足条件的m的整数值.
15、(8分)某单位计划在暑假阴间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七折优惠;乙旅行社表示可先免去一位游客的费用,其余游客七五折优惠.设该单位参加旅游的人数是x人.选择甲旅行社时,所需费用为元,选择乙旅行社时,所需费用为元.
(1)写出甲旅行社收费(元)与参加旅游的人数x(人)之间的关系式.
(2)写出乙旅行社收费(元)与参加旅游的人数x(人)之间的关系式.
(3)该单位选择哪一家旅行社支付的旅游费用较少?
16、(8分)解下列方程
(1)3x2-9x=0
(2)4x2-3x-1=0
17、(10分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一棵树的树梢,问小鸟至少飞行几米?
18、(10分)用圆规、直尺作图,不写作法,但要保留作图痕迹.
已知:四边形ABCD
求作:点P,使∠PBC=∠PCB,且点P到AD和DC的距离相等.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若式子有意义,则x的取值范围是_____.
20、(4分)重庆新高考改革方案正式确定,高考总成绩的组成科目由“语数外+文综/理综”变成“3+1+2”,其中“2”是指学生需从思想政治、地理、化学、生物学四门科目中自选2门科目,则小明从这四门学科中恰好选择化学、生物的概率为_____.
21、(4分)如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…,依次进行下去,则点的坐标为______,点的坐标为______.
22、(4分)已知正方形的对角线为4,则它的边长为_____.
23、(4分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则BC的长是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知y与x-1成正比例,且当x=3时,y=4.
(1)写出y与x之间的函数表达式;
(2)当x= -2时,求y的值;
(3)当y=0时,求x的值
25、(10分)定义:我们把对角线相等的四边形叫做和美四边形.
(1)请举出一种你所学过的特殊四边形中是和美四边形的例子.
(2)如图1,E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,已知四边形EFGH是菱形,求证:四边形ABCD是和美四边形;
(3)如图2,四边形ABCD是和美四边形,对角线AC,BD相交于O,∠AOB=60°,E、F分别是AD、BC的中点,请探索EF与AC之间的数量关系,并证明你的结论.
26、(12分)在如图平面直角坐标系中,直线l分别交x轴、y轴于点A(3,0)、B(0,4)两点,动点P从点O开始沿OA向点A以每秒个单位长度运动,动点Q从点B开始沿BO向点O以每秒个单位长度运动,过点P作y轴的平行线交直线AB于点M,连接PQ.且点P、Q分别从点O、B同时出发,运动时间为t秒.
(1)请直接写出直线AB的函数解析式: ;
(2)当t=4时,四边形BQPM是否为菱形?若是,请说明理由;若不是,请求出当t为何值时,四边形BQPM是菱形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据反比例函数的性质:k<0时,在图象的每一支上,y随x的增大而增大进行分析即可.
【详解】
解:∵k=-3<0,则y随x的增大而增大.
又∵0>a>a-1,则b>c.
故选A.
本题考查了反比例函数图象的性质,关键是掌握反比例函数的性质:
(1)反比例函数y(k≠0)的图象是双曲线;
(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;
(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.
2、D
【解析】
分析:根据一元二次方程根的判别式
进行计算即可.
详解:根据一元二次方程一元二次方程有两个实数根,
解得:,
根据二次项系数 可得:
故选D.
点睛:考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
3、B
【解析】
根据中位数、众数的概念分别求解即可.
【详解】
将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;
众数是一组数据中出现次数最多的数,即8;
故选:B
考查了中位数、众数的概念,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.
4、A
【解析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
【详解】
点P(−2,3)关于y轴的对称点的坐标为(2,3).
故选:A.
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
5、D
【解析】
根据四边形对角线相等且互相垂直,运用三角形中位线平行于第三边证明四个角都是直角且邻边相等,判断是正方形
【详解】
解:如图:
∵E、F、G、H分别为各边中点,
∴EF∥GH∥DB,EF=GH=DB,
EH=FG=AC,EH∥FG∥AC,
∴四边形EFGH是平行四边形,
∵DB⊥AC,
∴EF⊥EH,
∴四边形EFGH是矩形.
同理可证EH=AC,
∵AC=BD,
∴EH=EF
∴矩形EFGH是正方形,
故选:D.
本题考查的是中点四边形,解题时,主要是利用了三角形中位线定理的性质,比较简单,也可以利用三角形的相似,得出正确结论.
6、C
【解析】
如图,当x=2时,y=,
∵1<y<2,
∴1<<2,
解得2<k<4,
所以k=1.
故选C.
7、B
【解析】
利用众数和中位数的定义分析,即可得出.
【详解】
众数:出现次数最多的数,故众数为5;
中位数:从小到大排列,中间的数.将数据从小到大排列:2,3,4,5,5;故中位数为4;
故选B
本题考查了统计中的众数和中位数,属于基础题,注意求中位数时,要重新排列数字,再找中位数.
8、D
【解析】
根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
故本题选:D.
本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、50
【解析】
先计算调查的男同学喜欢与不喜欢的全体人数,再用男同学中喜欢的人数比上全体人数乘以100%即可得出答案.
【详解】
调查的全体人数为75+15+36+24=150人,
所以男同学中喜欢足球的人数占全体同学的百分比=
故答案为50.
本题考查的是简单的统计,能够计算出调查的全体人数是解题的关键.
10、1
【解析】
分析:连接DE并延长交AB于H,证明△DCE≌△HAE,根据全等三角形的性质可得DE=HE,DC=AH,则EF是△DHB的中位线,再根据中位线的性质可得答案.
详解:连接DE并延长交AB于H.∵CD∥AB, ∴∠C=∠A, ∵E是AC中点,
∴DE=EH, 在△DCE和△HAE中,∠C=∠A,CE=AE,∠CED=∠AEH,
∴△DCE≌△HAE(ASA), ∴DE=HE,DC=AH, ∵F是BD中点,
∴EF是△DHB的中位线, ∴EF=BH, ∴BH=AB-AH=AB-DC=2, ∴EF=1.
点睛:此题主要考查了全等三角形的判定与性质,以及三角形中位线性质,关键是正确画出辅助线,证明△DCE≌△HAE.
11、2
【解析】
两个面积相等的正方形无论它们各自位置如何,当其中一个正方形的顶点与另一个正方形对角线的交点重合时,此时的重合部分面积总是等于其中一个正方形面积的四分之一,据此求解即可.
【详解】
∵无论正方形位置关系如何,其重合部分面积不变,仍然等于其中一个正方形面积的四分之一,
∴重合部分面积=.
故答案为:2.
本题主要考查了正方形性质,熟练掌握相关概念是解题关键.
12、
【解析】
观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是
【详解】
由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是
故答案为:
本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.
13、②③④.
【解析】解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;
②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5﹣1)=80(km/h),∵(240+200﹣60﹣170)÷(60+80)=1.5(h),∴乙车出发1.5h时,两车相距170km,结论②正确;
③∵(240+200﹣60)÷(60+80)=(h),∴乙车出发h时,两车相遇,结论③正确;
④∵80×(4﹣3.5)=40(km),∴甲车到达C地时,两车相距40km,结论④正确.
综上所述,正确的结论有:②③④.
故答案为:②③④.
点睛:本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、-3,-1.
【解析】
首先根据方程组可得y=,把y=代入①得:x=m+,然后再把x=m+,y=代入不等式组中得,再解不等式组,确定出整数解即可.
【详解】
①×1得:1x-4y=1m③,
②-③得:y=,
把y=代入①得:x=m+,
把x=m+,y=代入不等式组中得:
,
解不等式组得:-4≤m≤-,
则m=-3,-1.
考点:1.一元一次不等式组的整数解;1.二元一次方程组的解.
15、(1);(2);(3)当人数为15人时,两家均可选择,当人数在之间时选择乙旅行社,当人数时,选择甲旅行社,见解析.
【解析】
(1)根据甲旅行社的优惠方式,可计算出y1与x之间的关系.
(2)根据乙旅行社的优惠方式,可计算出y2与x之间的关系.
(3)根据(1)(2)的表达式,利用不等式的知识可得出人数多少克选择旅行社.
【详解】
(1);
(2)根据乙旅行社的优惠方式;;
(3)①甲社总费用=乙社总费用的情况,此时,解得:;
即当时,两家费用一样.
②甲社总费用多于乙社总费用的情况:,
解不等式得:,
即当时,乙旅行社费用较低.
③甲社总费用少于乙社总费用的情况,此时
解得:
即当时,甲旅行社费用较低.
答:当人数为15人时,两家均可选择,当人数在之间时选择乙旅行社,当人数时,选择甲旅行社.
此题考查了一次函数的应用,解答本题的关键是得出甲乙旅行社收费与人数之间的关系式,利用不等式的知识解答,难度一般.
16、(1)x1=0,x2=3;(2)x1=1,x2=-.
【解析】
(1)直接利用提取公因式法分解因式进而解方程得出答案;
(2)直接利用十字相乘法分解因式解方程得出答案.
【详解】
(1)3x2-9x=0,
3x(x-3)=0,
解得:x1=0,x2=3;
(2)4x2-3x-1=0,
(4x+1)(x-1)=0,
解得:x1=1,x2=-.
本题考查了利用因式分解法解一元二次方程,正确掌握因式分解的方法是解题的关键.
17、小鸟至少飞行10米.
【解析】
根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.
【详解】
如图,设大树高为AB=10m,
小树高为CD=4m,
过C点作CE⊥AB于E,则EBDC是矩形,连接AC,
∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,
在Rt△AEC中,AC═=10(m),
答:小鸟至少飞行10米.
本题考查了勾股定理的应用.善于观察题目的信息是解题以及学好数学的关键.
18、图形见解析.
【解析】
作∠ADC的平分线和BC的垂直平分线便可.
【详解】
解:如图所示,点P即为所求.
考查线段垂直平分线和角平分线的作图运用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≥﹣2且x≠1.
【解析】
由知,
∴,
又∵在分母上,
∴.故答案为且.
20、
【解析】
先用树状图将所有可能的情况列出来,然后找到恰好选中化学、生物两科的情况数,然后利用概率公式等于恰好选中化学、生物两科的情况数与总情况数之比即可求解.
【详解】
设思想政治、地理、化学、生物(分别记为A、B、C、D),
画树状图如图所示,
由图可知,共有12种等可能结果,其中该同学恰好选中化学、生物两科的有2种结果,
所以该同学恰好选中化学、生物两科的概率为=.
故答案为: .
本题主要考查树状图或列表法求随机事件的概率,掌握树状图或列表法及概率公式是解题的关键.
21、 (16,32) (−21009,−21010).
【解析】
根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8、A9等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.
【详解】
当x=1时,y=2,
∴点A1的坐标为(1,2);
当y=−x=2时,x=−2,
∴点A2的坐标为(−2,2);
同理可得:A3(−2,−4),A4(4,−4),A5(4,8),A6(−8,8),A7(−8,−16),A8(16,−16),A9(16,32),…,
∴A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),
A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数).
∵2019=504×4+3,
∴点A2019的坐标为(−2504×2+1,−2504×2+2),即(−21009,−21010).
故答案为(16,32), (−21009,−21010).
此题主要考查一次函数与几何规律探索,解题的关键是根据题意得到坐标的变化规律.
22、.
【解析】
根据正方形的性质和勾股定理求边长即可.
【详解】
∵四边形ABCD是正方形,∴AO=DOAC4=2,AO⊥DO,∴△AOD是直角三角形,∴AD.
故答案为:2.
本题考查了勾股定理及正方形性质,属于基础题,比较简单.
23、
【解析】
在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,则斜边AB=2CD=1,则根据勾股定理即可求出BC的长.
【详解】
解:在Rt△ABC中,CD是斜边AB上的中线,CD=2,
∴AB=2CD=1.
∴BC===.
故答案为:.
本题主要考查直角三角形中斜边上的中线的性质及勾股定理,掌握直角三角形中斜边上的中线是斜边的一半是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1) ;(2)-6;(3)1
【解析】
(1)利用正比例函数的定义,设y=k(x-1),然后把已知的一组对应值代入求出k即可得到y与x的关系式;
(2)利用(1)中关系式求出x=-2时对应的函数值y即可.
(3)利用(1)中关系式求出y=0时对应的自变量x即可.
【详解】
解:(1)由题意可设,因为当时,
所以,,解得,
故与之间的函数表达式为
(2)因为,所以当时,
(3)因为,所以当时,即,解得
题考查了待定系数法求一次函数解析式.注意本题中是“y与x-1成正比例”,而不是“y与x成正比例”.
25、(1)矩形;(2)证明见解析;(3),证明见解析.
【解析】
(1)等腰梯形、矩形、正方形,任选一个即可;
(2)根据三角形中位线性质可得
(3),连接BE并延长至M,使,连接DM、AM、CM,先证四边形MABD是平行四边形,,,,是等边三角形,,由三角形中位线性质得.
【详解】
解:矩形的对角线相等,
矩形是和美四边形;
如图1,连接AC、BD,
,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,
,,
四边形EFGH是菱形,
,
,
四边形ABCD是和美四边形;
,
证明:如图2,连接BE并延长至M,使,连接DM、AM、CM,
,
四边形MABD是平行四边形,
,,
,
是等边三角形,
,
中,,,
.
本题综合考查了平行四边形的判定和三角形的有关知识,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系.
26、(1);(2)当t=4时,四边形BQPM是菱形.
【解析】
(1)由点A、B的坐标,利用待定系数法求得直线AB的函数解析式;
(2)当t=4时,求得BQ、OP的长度,结合勾股定理得到PQ=BQ;由相似三角形:△APM∽△AOB的对应边相等求得PM的长度,得到BQ=PM,所以该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知当t=4时,四边形BQPM是菱形.
【详解】
解:(1)设直线AB的解析式为:y=kx+b(k≠0).
把点A(1,0)、B(0,4)分别代入,得
解得.
故直线AB的函数解析式是:y=﹣x+1.
故答案是:y=﹣x+1.
(2)当t=4时,四边形BQPM是菱形.理由如下:
当t=4时,BQ=,则OQ=.
当t=4时,OP=,则AP=.
由勾股定理求得PQ=.
∵PM∥OB,
∴△APM∽△AOB,
∴,即,
解得PM=.
∴四边形BQPM是平行四边形,
∴当t=4时,四边形BQPM是菱形.
考查了一次函数综合题,熟练掌握待定系数法求一次函数解析式,菱形的判定与性质,勾股定理,相似三角形的判定与性质,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目.
题号
一
二
三
四
五
总分
得分
男同学
女同学
喜欢的
75
36
不喜欢的
15
24
甘肃省平凉市崇信县2024-2025学年数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份甘肃省平凉市崇信县2024-2025学年数学九年级第一学期开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
甘肃省定西市2024年数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份甘肃省定西市2024年数学九年级第一学期开学教学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届甘肃省武威市名校九年级数学第一学期开学教学质量检测试题【含答案】: 这是一份2025届甘肃省武威市名校九年级数学第一学期开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。