甘肃省张掖市临泽二中学、三中学、四中学2024-2025学年九上数学开学质量跟踪监视试题【含答案】
展开
这是一份甘肃省张掖市临泽二中学、三中学、四中学2024-2025学年九上数学开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,四象限,则k的取值可能是,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一个正多边形每个外角都是30°,则这个多边形边数为( )
A.10B.11C.12D.13
2、(4分)数据-2,-1,0,1,2的方差是( )
A.0B.C.2D.4
3、(4分)下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是( )
A.96B.86C.68D.52
4、(4分)在□ABCD中,∠A、∠B的度数之比为5∶4,则∠C等于( )
A.60°B.80°C.100°D.120°
5、(4分)下列说法中错误的是( )
A.直角三角形斜边上的中线等于斜边的一半
B.等底等高三角形的面积相等
C.三角形的中位线平行于第三边,并且等于第三边的一半
D.如果三角形两条边的长分别是a、b,第三边长为c,则有a2+b2=c2
6、(4分)如图,已知的顶点A和AB边的中点C都在双曲线的一个分支上,点B在x轴上,则的面积为
A.3B.4C.6D.8
7、(4分)下列二次根式是最简二次根式的是( )
A.B.C.D.
8、(4分)若反比例函数y=的图象位于第二、四象限,则k的取值可能是( )
A.﹣1B.1C.2D.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)图中的虚线网格是等边三角形,它的每一个小三角形都是边长为1的等边三角形.
(1)如图①,连接相邻两个小正三角形的顶点A,B,则AB的长为_______
(2)在如图②所示的网格中,用无刻度的直尺,画一个斜边长为的直角三角形,且它的顶点都在格点上.
10、(4分)如图,矩形ABCD的对角线AC和BD相交于点O,∠ADB=30°,AB=4,则 OC=_____.
11、(4分)计算=_____.
12、(4分)如图所示,△ABC中,CD⊥AB于D,E是AC的中点,若DE=5,则AC的长等于_____.
13、(4分)如图,正方形中,点在上,交、于点、,点、分别为、的中点,连接、,若,,则______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,反比例函数的图像与一次函数的图像交于点,点的横坐标是,点是第一象限内反比例函数图像上的动点,且在直线的上方.
(1)若点的坐标是,则 , ;
(2)设直线与轴分别交于点,求证:是等腰三角形;
(3)设点是反比例函数图像位于之间的动点(与点不重合),连接,比较与的大小,并说明理由.
15、(8分)在正方形中,点是对角线上的两点,且满足,连接.试判断四边形的形状,并说明理由.
16、(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E、F分别是OA、OC的中点.
求证:BE=DF
17、(10分)如图,在△ABC中,AD为BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.
(1)四边形AFCD是什么特殊的四边形?请说明理由.
(2)填空:
①若AB=AC,则四边形AFCD是_______形.
②当△ABC满足条件______时,四边形AFCD是正方形.
18、(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分) “我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=0.5千米,则该沙田的面积为________________平方千米.
20、(4分)在数学课上,老师提出如下问题:
如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.
小明的折叠方法如下:
如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.
老师说:“小明的作法正确.”
请回答:小明这样折叠的依据是______________________________________.
21、(4分)已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是______
22、(4分)斜边长17cm,一条直角边长15cm的直角三角形的面积 .
23、(4分)如图,直线l1∶y=ax与直线l2∶y=kx+b交于点P,则不等式ax>kx+b的解集为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)将矩形ABCD折叠使点A,C重合,折痕交BC于点E,交AD于点F,可以得到四边形AECF是一个菱形,若AB=4,BC=8,求菱形AECF的面积.
25、(10分)如图,点、分别在矩形的边、上,把这个矩形沿折叠后,点恰好落在边上的点处,且.
(1)求证:;
(2)连接、,试证明:.
26、(12分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.
解答:360°÷30°=1.
故选C.
“点睛”本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.
2、C
【解析】
先求出这组数据的平均数,再根据方差的公式进行计算即可.
【详解】
解:∵数据﹣2,﹣1,0,1,2的平均数是:(﹣2﹣1+0+1+2)÷5=0,
∴数据﹣2,﹣1,0,1,2的方差是:.
故选C.
本题考查方差的计算.
3、C
【解析】
根据题意得出第n个图形中白色圆个数为n(n+1)+2(n﹣1),据此可得.
【详解】
解:∵第①个图形中白色圆个数2=1×2+2×0,
第②个图形中白色圆个数8=2×3+2×1,
第③个图形中白色圆个数16=3×4+2×2,
……
∴第⑦个图形中白色圆个数为7×8+2×6=68,
故选C.
本题主要考查图形的变化规律,解题的关键是根据题意得出第n个图形中白色圆个数为n(n+1)+2(n﹣1).
4、C
【解析】
试题分析:根据平行四边形的性质可得∠A、∠B互补,从而可求得∠A的度数,即可得到结果.
∵□ABCD
∴∠A+∠B =180°
∵∠A、∠B的度数之比为5∶4
∴∠C =∠A=100°
故选C.
考点:平行四边形的性质
点评:解题的关键是熟练掌握平行四边形的邻角互补、对角相等.
5、D
【解析】
根据三角性有关的性质可逐一分析选项,即可得到答案.
【详解】
A项正确,直角三角形斜边上的中线等于斜边的一半;B项正确,等底等高三角形的面积相等;C项正确,三角形的中位线平行于第三边,并且等于第三边的一半;D项错误如果三角形两条边的长分别是a、b,第三边长为c,则不一定是a2+b2=c2,有可能不是直角三角形.
本题考查了三角形的的性质、三角形的面积及勾股定理相关的知识,学生针对此题需要认真掌握相关定理,即可求解.
6、C
【解析】
,结合图形可得:S△ABO=S△AOM+S△AMB,分别求解出S△AOM、S△AMB的值,过点A、C分别作AM⊥OB于M、CD⊥OB于D,设点A坐标为(x,y),设B的坐标为(a,0),已知点C是线段AB的中点, 由点A位于反比例函数的图象上可得:xy=4,即S△AOM=2,接下来,根据点C的坐标为( ),同理可解得S△CDO的面积,接下来,由S△AMB=×AM×BM,MB=|a−x|,AM=y,可解得S△AMB,即可确定△ABO的面积.
【详解】
解:过点A、C分别作AM⊥OB于M、CD⊥OB于D,设点A坐标为(x,y)
∵ 顶点A在双曲线y=(x>0)图象上
∴ xy=4
∵ AM⊥OB
∴ S△AMO=×AM×OM=×xy,S△AMB=×AM×BM (三角形的面积等于一边与此边上高的乘积的一半)
∵ S△AMO=×xy, xy=4
∴ S△AMO=2
设B的坐标为(a,0)
∵ 点C是线段AB的中点 点A、B坐标为(x,y)、(a,0)
∴ 点C坐标为()
∵ CD⊥OB 点C坐标为()
∴ S△CDO=×CD×OD=×()×()=2 (三角形的面积等于一边与此边上高的乘积的一半)
故ay=2
∵ S△AMB=×AM×BM,MB=|a−x| ,AM=y
∴ S△AMB=×|a−x|×y=4
∵ S△ABO=S△AOM+S△AMB,S△AOM=2,S△AMB=4
∴ S△ABO=6
即△ABO的面积是6,答案选C.
本题考查反比例函数系数k的几何意义,熟练掌握计算法则是解题关键.
7、B
【解析】
根据最简二次根式的概念即可求出答案.
【详解】
(A)原式=2 ,故A不是最简二次根式;
(C)原式=2 ,故B不是最简二次根式;
(D)原式= ,故D不是最简二次根式;
故选:B.
此题考查最简二次根式,解题关键在于掌握运算法则
8、A
【解析】
根据反比例函数的图像与性质解答即可.
【详解】
∵反比例函数y=的图象位于第二、四象限,
∴k
相关试卷
这是一份甘肃省永昌六中学2025届数学九上开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份甘肃省武威第十九中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份甘肃省天水市麦积区向荣中学2024-2025学年数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。