年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    广东省东莞市四海教育集团六校联考2024年九上数学开学学业水平测试模拟试题【含答案】

    广东省东莞市四海教育集团六校联考2024年九上数学开学学业水平测试模拟试题【含答案】第1页
    广东省东莞市四海教育集团六校联考2024年九上数学开学学业水平测试模拟试题【含答案】第2页
    广东省东莞市四海教育集团六校联考2024年九上数学开学学业水平测试模拟试题【含答案】第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省东莞市四海教育集团六校联考2024年九上数学开学学业水平测试模拟试题【含答案】

    展开

    这是一份广东省东莞市四海教育集团六校联考2024年九上数学开学学业水平测试模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图是我国一位古代数学家在注解《周髀算经》时给出的,曾被选为2002年在北京召开的国际数学家大会的会徽,它通过对图形的切割、拼接,巧妙地证明了勾股定理,这位伟大的数学家是( )
    A.杨辉B.刘徽C.祖冲之D.赵爽
    2、(4分)如图,一次函数的图象经过、两点,则不等式的解集是( )
    A.B.C.D.
    3、(4分)已知点(-2,y1),(1,0),(3,y2)都在一次函数y=kx-2的图象上,则y1,y2,0的大小关系是( )
    A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1
    4、(4分)如图1是由个全等的边长为的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是的大正方形,则( )
    A.甲、乙都可以B.甲可以,乙不可以
    C.甲不可以,乙可以D.甲、乙都不可以
    5、(4分)在直角坐标系中,点关于原点对称的点为,则点的坐标是( )
    A.B.C.D.
    6、(4分)如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是( )
    A.0.72B.2.0C.1.125D.不能确定
    7、(4分)已知数据:1,2,0,2,﹣5,则下列结论错误的是( )
    A.平均数为0B.中位数为1C.众数为2D.方差为34
    8、(4分)如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为( )
    A.x>﹣2B.x<﹣2C.x>4D.x<4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知点P(m-3,m+1)在第二象限,则m的取值范围是_______________.
    10、(4分)一个矩形在直角坐标平面上的三个顶点的坐标分别是(﹣2,﹣1)、(3,﹣1)、(﹣2,3),那么第四个顶点的坐标是_____.
    11、(4分)如图在平行四边形ABCD中,CD=2AD,BE⊥AD,点F为DC中点,连接EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确的有_____.
    12、(4分)如图,直线与x轴交点坐标为,不等式的解集是____________.
    13、(4分)把抛物线yx2向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在平面直角坐标系中,为坐标原点,矩形的顶点,将矩形的一个角沿直线 折叠,使得点 落在对角线 上的点 处,折痕与 轴交于点 .
    (1)求直线所对应的函数表达式;
    (2)若点 在线段上,在线段 上是否存在点 ,使以 为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.
    15、(8分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.
    (1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;
    (2)如图1,猜想AG与BE的位置关系,并加以证明;
    (3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.
    16、(8分)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线的顶点.
    (1)当时,求该抛物线下方(包括边界)的好点个数.
    (2)当时,求该抛物线上的好点坐标.
    (3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.
    17、(10分)已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.
    (1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是 .
    (2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
    (3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
    18、(10分)如图,在平面直角坐标系中,四边形为正方形,已知点、,点、在第二象限内.
    (1)点的坐标___________;
    (2)将正方形以每秒个单位的速度沿轴向右平移秒,若存在某一时刻,使在第一象限内点、两点的对应点、正好落在某反比例函数的图象上,请求出此时的值以及这个反比例函数的解析式;
    (3)在(2)的情况下,问是否存在轴上的点和反比例函数图象上的点,使得以、、、四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点、的坐标;若不存在,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知:将直线y=x﹣1向上平移3个单位后得直线y=kx+b,则直线y=kx+b与x轴交点坐标为_____.
    20、(4分)当x=4时,二次根式的值为______.
    21、(4分)如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差S甲2、S乙2的大小:S甲2____S乙2(填“>”、“<”或“=”)
    22、(4分)已知一次函数的图像经过点(2,3),则的值为 ▲
    23、(4分)一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是 ,众数是 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)先化简÷(-),然后再从-2<x≤2的范围内选取一个合适的x的整数值代入求值
    25、(10分)如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.
    (1)求证:△ADE≌△FCE.
    (2)若∠BAF=90°,BC=5,EF=3,求CD的长.
    26、(12分)某童装网店批发商批发一种童装,平均每天可售出件,每件盈利元.经调查,如果每件童装降价元,那么平均每天就可多售出件.
    (1)设每件童装降价元,那么每天可售出多少件童装?每件童装的利润是多少元?(用含的代数式表示)
    (2)为了迎接“六一”儿童节,商家决定降价促销、尽快减少库存,又想保证平均每天盈利元,求每件童装应降价多少元?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    3世纪,汉代赵爽在注解《周髀算经》时,通过对图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.
    【详解】
    由题意,可知这位伟大的数学家是赵爽.
    故选:D.
    考查了数学常识,勾股定理的证明.3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽通过对这种图形切割、拼接,巧妙地利用面积关系证明了著名的勾股定理.
    2、A
    【解析】
    由图象可知:B(1,0),且当x>1时,y<0,即可得到不等式kx+b<0的解集是x>1,即可得出选项.
    【详解】
    解:∵一次函数y=kx+b的图象经过A、B两点,
    由图象可知:B(1,0),
    根据图象当x>1时,y<0,
    即:不等式kx+b<0的解集是x>1.
    故选:A.
    本题主要考查对一次函数与一元一次不等式的关系,一次函数的图象等知识点的理解和掌握,能根据图象进行说理是解此题的关键,用的数学思想是数形结合思想.
    3、B
    【解析】
    先根据点(1,0)在一次函数y=kx﹣1的图象上,求出k=1>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论.
    【详解】
    ∵点(1,0)在一次函数y=kx﹣1的图象上,∴k﹣1=0,∴k=1>0,∴y随x的增大而增大.
    ∵﹣1<1<3,∴y1<0<y1.
    故选B.
    本题考查了一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.
    4、A
    【解析】
    直接利用图形的剪拼方法结合正方形的性质分别分析得出答案.
    【详解】
    解:如图所示:
    可得甲、乙都可以拼一个面积是5的大正方形.
    故选:.
    此题主要考查了图形的剪拼以及正方形的性质,正确应用正方形的性质是解题关键.
    5、B
    【解析】
    根据坐标系中关于原点对称的点的坐标特征:原坐标点为,关于原点对称:横纵坐标值都变为原值的相反数,即对称点为可得答案.
    【详解】
    解:关于原点对称的点的坐标特征:横纵坐标值都变为原值的相反数,所以点有关于原点O的对称点Q的坐标为(-2,-1).
    故选:B
    本题考查了对称与坐标.设原坐标点为,坐标系中关于对称的问题分为三类:1.关于轴对称:横坐标值不变仍旧为,纵坐标值变为,即对称点为;2.关于轴对称:纵坐标值不变仍旧为,横坐标值变为即对称点为;3.关于原点对称:横纵坐标值都变为原值的相反数,即对称点为.熟练掌握变化规律是解题关键.
    6、A
    【解析】
    先根据勾股定理的逆定理证明△ABC是直角三角形,根据计算直角三角形的面积的两种计算方法求出斜边上的高CD.
    【详解】
    ∵AB=1.5,BC=0.9,AC=1.2,
    ∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25,
    ∴AB2=BC2+AC2,
    ∴∠ACB=90°,
    ∵CD是AB边上的高,
    ∴S△ABC=AB·CD=AC·BC,
    1.5CD=1.2×0.9,
    CD=0.72,
    故选A.
    该题主要考查了勾股定理的逆定理、三角形的面积公式及其应用问题;解题的方法是运用勾股定理首先证明△ABC为直角三角形;解题的关键是灵活运用三角形的面积公式来解答.
    7、D
    【解析】
    根据平均数、方差的计算公式和中位数、众数的定义分别进行解答,即可得出答案.
    【详解】
    A.这组数据:1,2,0,2,﹣5的平均数是:(1+2+0+2-5)÷5=0,故本选项正确;
    B.把这组数按从小到大的顺序排列如下:-5,0,1,2,2,可观察1处在中间位置,所以中位数为1,故本选项正确;
    C.观察可知这组数中出现最多的数为2,所以众数为2,故本选项正确;
    D. ,故本选项错误,
    所以选D
    本题考查众数,算术平均数,中位数,方差;熟练掌握平均数、方差的计算公式和中位数、众数的定义是解决本题的关键.由于它们的计算由易到难为众数、中位数、算术平方根、方差,所以考试时可按照这样的顺序对选项进行判断,例如本题前三个选项正确,直接可以选D,就可以不用计算方差了.
    8、A
    【解析】
    【分析】求不等式kx+b>4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.
    【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x>-2,
    ∴不等式kx+b>4的解集是x>-2,
    故选A.
    【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、﹣1<m<1
    【解析】
    试题分析:让点P的横坐标小于0,纵坐标大于0列式求值即可.
    解:∵点P(m﹣1,m+1)在第二象限,
    ∴m﹣1<0,m+1>0,
    解得:﹣1<m<1.故填:﹣1<m<1.
    【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
    10、(3,3)
    【解析】
    因为(-2,-1)、(-2,3)两点横坐标相等,长方形有一边平行于y轴,(-2,-1)、(3,-1)两点纵坐标相等,长方形有一边平行于x轴,即可求出第四个顶点的坐标.
    【详解】
    解:过(﹣2,3)、(3,﹣1)两点分别作x轴、y轴的平行线,
    交点为(3,3),即为第四个顶点坐标.
    故答案为:(3,3).
    此题考查坐标与图形性质,解题关键在于画出图形
    11、①②③④
    【解析】
    延长EF交BC的延长线于G,取AB的中点H连接FH.想办法证明EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题.
    【详解】
    如图延长EF交BC的延长线于G,取AB的中点H连接FH.
    ∵CD=2AD,DF=FC,
    ∴CF=CB,
    ∴∠CFB=∠CBF,
    ∵CD∥AB,
    ∴∠CFB=∠FBH,
    ∴∠CBF=∠FBH,
    ∴∠ABC=2∠ABF.故①正确,
    ∵DE∥CG,
    ∴∠D=∠FCG,
    ∵DF=FC,∠DFE=∠CFG,
    ∴△DFE≌△FCG(AAS),
    ∴FE=FG,
    ∵BE⊥AD,
    ∴∠AEB=90°,
    ∵AD∥BC,
    ∴∠AEB=∠EBG=90°,
    ∴BF=EF=FG,故②正确,
    ∵S△DFE=S△CFG,
    ∴S四边形DEBC=S△EBG=2S△BEF,故③正确,
    ∵AH=HB,DF=CF,AB=CD,
    ∴CF=BH,∵CF∥BH,
    ∴四边形BCFH是平行四边形,
    ∵CF=BC,
    ∴四边形BCFH是菱形,
    ∴∠BFC=∠BFH,
    ∵FE=FB,FH∥AD,BE⊥AD,
    ∴FH⊥BE,
    ∴∠BFH=∠EFH=∠DEF,
    ∴∠EFC=3∠DEF,故④正确,
    故答案为:①②③④
    本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    12、
    【解析】
    根据直线y=kx+b与x轴交点坐标为(1,0),得出y的值不小于0的点都符合条件,从而得出x的解集.
    【详解】
    解:∵直线y=kx+b与x轴交点坐标为(1,0),
    ∴由图象可知,
    当x≤1时,y≥0,
    ∴不等式kx+b≥0的解集是x≤1.
    故答案是x≤1.
    本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
    13、y=(x+1)1-1
    【解析】
    先由平移方式确定新抛物线的顶点坐标.然后可得出顶点式的解析式。
    【详解】
    解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1).
    可设新抛物线的解析式为:y=(x-h)1+k,
    代入得:y=(x+1)1-1.
    故答案为:y=(x+1)1-1
    此题考查了二次函数图象与几何变换以及一般式转化顶点式,正确将一般式转化为顶点式是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y=2x-1;(2)存在点,Q(,), 使以为顶点的四边形为平行四边形.
    【解析】
    (1)由矩形的性质可得出点B的坐标及OA,AB的长,利用勾股定理可求出OB的长,设AD=a,则DE=a,OD=8-a,OE=OB-BE=1-6=2,利用勾股定理可求出a值,进而可得出点D的坐标,再根据点B,D的坐标,利用待定系数法可求出直线BD所对应的函数表达式;
    (2)先假设存在点P 满足条件,过E作 交BC于P作,交BD 于Q点,这样得到点Q,四边形 即为所求平行四边形,过E作 得 , 可得E点坐标, 根据点B、E坐标求出直线BD的解析式, 又 根据平行的直线,k值相等,求出PE解析式, 再求点出P坐标,从而求解.
    【详解】
    (1)由题意,得:点B的坐标为(8,6),OA=8,AB=OC=6,
    ∴OB= =1.
    设AD=a,则DE=a,OD=8-a,OE=OB-BE=1-6=2.
    ∵OD2=OE2+DE2,即(8-a)2=22+a2,
    ∴a=3,
    ∴OD=5,
    ∴点D的坐标为(5,0).
    设直线BD所对应的函数表达式为y=kx+b(k≠0),
    将B(8,6),D(5,0)代入y=kx+b,得:
    解得: ∴直线BD所对应的函数表达式为y=2x-1.
    (2)如图2,假设在线段 上存在点P 使 为顶点的四边形为平行四边形,过E作 交BC于P,过点P作,交BD 于Q点,四边形 即为所求平行四边形,过E作 得 ,,

    直线 ,
    又 , ,
    ,在线段上存在点P(5,6),
    使以为顶点的四边形为平行四边形,
    ∵,设点Q的坐标为(m,2m-1),四边形DEPQ为平行四边形,
    D(5,0),,点P的纵坐标为6,
    ∴6-(2m-1)=-0,解得:m=,
    ∴点Q的坐标为(,).
    ∴存在,点Q的坐标为(,).
    本题考查矩形的性质、勾股定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行四边形的性质,熟练掌握和灵活运用相关知识是解题的关键.
    15、(1)证明见解析(2)AG⊥BE(3)证明见解析
    【解析】
    (1)根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;
    (2)根据正方形的性质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE;
    (3)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立.
    【详解】
    (1)证明:∵四边形ABCD为正方形,
    ∴DA=DC,∠ADB=∠CDB=45°,
    在△ADG和△CDG中,

    ∴△ADG≌△CDG(SAS),
    ∴∠DAG=∠DCG;
    (2)解:AG⊥BE.理由如下:
    ∵四边形ABCD为正方形,
    ∴AB=DC,∠BAD=∠CDA=90°,
    在△ABE和△DCF中,

    ∴△ABE≌△DCF(SAS),
    ∴∠ABE=∠DCF,
    ∵∠DAG=∠DCG,
    ∴∠DAG=∠ABE,
    ∵∠DAG+∠BAG=90°,
    ∴∠ABE+∠BAG=90°,
    ∴∠AHB=90°,
    ∴AG⊥BE;
    (3)解:由(2)可知AG⊥BE.
    如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形.
    ∴∠MON=90°,
    又∵OA⊥OB,
    ∴∠AON=∠BOM.
    ∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,
    ∴∠OAN=∠OBM.
    在△AON与△BOM中,

    ∴△AON≌△BOM(AAS).
    ∴OM=ON,
    ∴矩形OMHN为正方形,
    ∴HO平分∠BHG.
    此题是四边形综合题,主要考查了正方形的性质,矩形的判定和性质,全等三角形的判定和性质,角平分线的意义,垂直的判定,利用全等三角形的判断方法判断三角形是解本题的关键.
    16、(1)好点有:,,,和,共5个;(2),和;(3).
    【解析】
    (1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,画出函数图象,利用图象法解决问题即可;(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5,如图2,结合图象即可解决问题;(3)如图3中,抛物线的顶点P(m,m+2),推出抛物线的顶点P在直线y=x+2上,由点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),求出抛物线经过点E或点F时Dm的值,即可判断.
    【详解】
    解:(1)当时,二次函数的表达式为
    画出函数图像(图1)
    图1
    当时,;当时,
    抛物线经过点和
    好点有:,,,和,共5个
    (2)当时,二次函数的表达式为
    画出函数图像(图2)
    图2
    当时,;当时,;当时,
    该抛物线上存在好点,坐标分别是,和
    (3)抛物线顶点P的坐标为
    点P支直线上
    由于点P在正方形内部,则
    如图3,点,
    图3
    当顶点P支正方形OABC内,且好点恰好存在8个时,抛物线与线段EF有交点(点F除外)
    当抛物线经过点时,
    解得:,(舍去)
    当抛物线经过点时,
    解得:,(舍去)
    当时,顶点P在正方形OABC内,恰好存在8个好点
    本题属于二次函数综合题,考查了正方形的性质,二次函数的性质,好点的定义等知识,解题的关键是理解题意,学会正确画出图象,利用图象法解决问题,学会利用特殊点解决问题.
    17、(1)△AEF是等边三角形,理由见解析;(2)见解析;(3)点F到BC的距离为3﹣.
    【解析】
    (1)连接AC,证明△ABC是等边三角形,得出AC=AB,再证明△BAE≌△DAF,得出AE=AF,即可得出结论;
    (2)连接AC,同(1)得:△ABC是等边三角形,得出∠BAC=∠ACB=60°,AB=AC,再证明△BAE≌△CAF,即可得出结论;
    (3)同(1)得:△ABC和△ACD是等边三角形,得出AB=AC,∠BAC=∠ACB=∠ACD=60°,证明△BAE≌△CAF,得出BE=CF,AE=AF,证出△AEF是等边三角形,得出∠AEF=60°,证出∠AEB=45°,得出∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,则GE=GF,∠FGH=30°,由直角三角形的性质得出FG=2FH,GH=FH,CF=2CH,FH=CH,设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,得出EH=4+x=2x+3x,解得:x=﹣1,求出FH=x=3﹣即可.
    【详解】
    (1)解:△AEF是等边三角形,理由如下:
    连接AC,如图1所示:
    ∵四边形ABCD是菱形,
    ∴AB=BC=AD,∠B=∠D,
    ∵∠ABC=60°,
    ∴∠BAD=120°,△ABC是等边三角形,
    ∴AC=AB,
    ∵点E是线段CB的中点,
    ∴AE⊥BC,
    ∴∠BAE=30°,
    ∵∠EAF=60°,
    ∴∠DAF=120°﹣30°﹣60°=30°=∠BAE,
    在△BAE和△DAF中,

    ∴△BAE≌△DAF(ASA),
    ∴AE=AF,
    又∵∠EAF=60°,
    ∴△AEF是等边三角形;
    故答案为:等边三角形;
    (2)证明:连接AC,如图2所示:
    同(1)得:△ABC是等边三角形,
    ∴∠BAC=∠ACB=60°,AB=AC,
    ∵∠EAF=60°,
    ∴∠BAE=∠CAF,
    ∵∠BCD=∠BAD=120°,
    ∴∠ACF=60°=∠B,
    在△BAE和△CAF中,

    ∴△BAE≌△CAF(ASA),
    ∴BE=CF;
    (3)解:同(1)得:△ABC和△ACD是等边三角形,
    ∴AB=AC,∠BAC=∠ACB=∠ACD=60°,
    ∴∠ACF=120°,
    ∵∠ABC=60°,
    ∴∠ABE=120°=∠ACF,
    ∵∠EAF=60°,
    ∴∠BAE=∠CAF,
    在△BAE和△CAF中,

    ∴△BAE≌△CAF(ASA),
    ∴BE=CF,AE=AF,
    ∵∠EAF=60°,
    ∴△AEF是等边三角形,
    ∴∠AEF=60°,
    ∵∠EAB=15°,∠ABC=∠AEB+∠EAB=60°,
    ∴∠AEB=45°,
    ∴∠CEF=∠AEF﹣∠AEB=15°,
    作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,如图3所示:
    则GE=GF,∠FGH=30°,
    ∴FG=2FH,GH=FH,
    ∵∠FCH=∠ACF﹣∠ACB=60°,
    ∴∠CFH=30°,
    ∴CF=2CH,FH=CH,
    设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,
    ∵BC=AB=4,
    ∴CE=BC+BE=4+2x,
    ∴EH=4+x=2x+3x,
    解得:x=﹣1,
    ∴FH=x=3﹣,
    即点F到BC的距离为3﹣.
    本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.
    18、(1)点坐标为;(2),;(3)存在,,或,或,
    【解析】
    (1)证明△DFA≌△AEB(AAS),则DF=AE=3,BE=AF=1,即可求解;
    (2)t秒后,点D′(−7+2t,3)、B′(−3+2t,1),则k=(−7+2t)×3=(−3+2t)×1,即可求解;
    (3)分为平行四边形的一条边时和为平行四边形对角线时两种情况,分别求解即可.
    【详解】
    解:(1)过点、分别作轴、轴交于点、,
    ,,,
    又,,,,,
    点坐标为;
    (2)秒后,点、,
    则,解得:,则,
    (3)存在,理由:
    设:点,点,,
    ①在第一象限,且为平行四边形的一条边时,图示平行四边形,点向左平移个单位、向上平移个单位得到点,
    同理点向左平移个单位、向上平移个单位为得到点,即:,,,
    解得:,,,
    故点、点;
    ②在第一象限,且当为平行四边形对角线时,图示平行四边形,中点坐标为,
    该中点也是的中点,
    即:,,,
    解得:,,,
    故点、;
    ③在第三象限,且当为平行四边形的一条边时,图示平行四边形,点向左平移个单位、向上平移个单位得到点,
    同理点向右平移个单位、向下平移个单位为得到点,即:,,,
    解得:,,,
    故点、点;
    综上:,或,或,
    本题考查的是反比例函数综合运用,涉及到三角形全等、图形平移等知识点,其中(3),要通过画图确定图形可能的位置再求解,避免遗漏.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(﹣4,0).
    【解析】
    根据平行直线的解析式的k值相等,向上平移3个单位,横坐标不变,纵坐标加3,写出平移后的解析式,然后令y=0,即可得解.
    【详解】
    ∵直线y=x﹣1向上平移3个单位后得直线y=kx+b,
    ∴直线y=kx+b的解析式为:y=x+2,
    令y=0,则0=x+2,
    解得:x=﹣4,
    ∴直线y=kx+b与x轴的交点坐标为(﹣4,0).
    故答案为:(﹣4,0).
    本题主要考查直线平移的规律以及直线与x轴交点的坐标,掌握平行直线的解析式的k值相等,是解题的关键.
    20、0
    【解析】
    直接将,代入二次根式解答即可.
    【详解】
    解:把x=4代入二次根式=0,
    故答案为:0
    此题主要考查了二次根式的定义,直接将代入求出,利用二次根式的性质直接开平方是解决问题的关键.
    21、<
    【解析】
    利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.
    【详解】
    解:由折线统计图得乙运动员的成绩波动较大,
    所以S甲2<S乙2
    故选<
    本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.
    22、2.
    【解析】
    将点(2,3)代入y=kx+k-3可得关于k的方程,解方程求出k的值即可.
    【详解】
    将点(2,3)代入一次函数y=kx+k−3,
    可得:3=2k+k−3,
    解得:k=2.
    故答案为2.
    本题考查了一次函数的性质.
    23、7 1
    【解析】
    根据中位数和众数的定义解答.
    【详解】
    解:数据按从小到大排列:3,5,7,1,1,所以中位数是7;
    数据1出现2次,次数最多,所以众数是1.
    故填7;1.
    【点击】
    本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    二、解答题(本大题共3个小题,共30分)
    24、3.
    【解析】
    先将原分式进行化解,化解过程中注意不为0的量,根据不为0的量结合x的取值范围得出合适的x的值,将其代入化简后的代数式中即可得出结论.
    【详解】
    解:原式===.
    其中,即x≠﹣1、0、1.
    又∵﹣2<x≤2且x为整数,∴x=2.
    将x=2代入中得:==3.
    考点:分式的化简求值.
    25、(1)证明过程见解析;(2)8.
    【解析】
    (1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;
    (2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.
    【详解】
    (1)∵四边形ABCD是平行四边形, ∴AD∥BC,AB∥CD,
    ∴∠DAE=∠F,∠D=∠ECF, ∵E是▱ABCD的边CD的中点, ∴DE=CE,
    在△ADE和△FCE中,
    ,∴△ADE≌△FCE(AAS);
    (2)∵ADE≌△FCE, ∴AE=EF=3, ∵AB∥CD, ∴∠AED=∠BAF=90°,
    在▱ABCD中,AD=BC=5, ∴DE==4, ∴CD=2DE=8
    考点:(1)平行四边形的性质;(2)全等三角形的判定与性质
    26、(1),;(2)应降价元.
    【解析】
    (1)设每件童装降价x元,则每件童装的利润是(40-x)元,每天可售出(1+2x)件;
    (2)根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.
    【详解】
    解:(1)设每件童装降价x元,则每件童装的利润是(40-x)元,每天可售出(1+2x)件.
    (2)依题意,得:(40-x)(1+2x)=110,
    解得:x1=10,x2=1.
    ∵要尽快减少库存,
    ∴x=1.
    答:每件童装应降价1元.
    本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    2025届广东省东莞市四海教育集团六校联考数学九年级第一学期开学检测试题【含答案】:

    这是一份2025届广东省东莞市四海教育集团六校联考数学九年级第一学期开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省东莞市四海教育集团六校联考2023-2024学年九上数学期末检测模拟试题含答案:

    这是一份广东省东莞市四海教育集团六校联考2023-2024学年九上数学期末检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2023-2024学年广东省东莞市四海教育集团六校联考数学九上期末教学质量检测试题含答案:

    这是一份2023-2024学年广东省东莞市四海教育集团六校联考数学九上期末教学质量检测试题含答案,共8页。试卷主要包含了定义等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map