广东省佛山北外附学校三水外国语学校2024-2025学年数学九上开学达标检测试题【含答案】
展开这是一份广东省佛山北外附学校三水外国语学校2024-2025学年数学九上开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形中,绕某个点旋转180°能与自身重合的图形有( )
(1)正方形;(2)等边三角形;(3)矩形;(4)直角;(5)平行四边形.
A.5个B.4个C.3个D.2个
2、(4分)如图,线段AB两端点的坐标分别为A(-1,0),B(1,1),把线段AB平移到CD位置,若线段CD两端点的坐标分别为C(1,a),D(b,4),则a+b的值为( )
A.7B.6C.5D.4
3、(4分)对于代数式(为常数),下列说法正确的是( )
①若,则有两个相等的实数根
②存在三个实数,使得
③若与方程的解相同,则
A.①②B.①③C.②③D.①②③
4、(4分)在四边形ABCD中,对角线AC、BD交于点O,下列条件中,不能判定四边形ABCD是平行四边形的是( )
A.AB=DC,AD=BCB.AD∥BC,AD=BC
C.AB∥DC,AD=BCD.OA=OC,OD=OB
5、(4分)如图,在中,度.以的三边为边分别向外作等边三角形,,,若,的面积分别是8和3,则的面积是( )
A.B.C.D.5
6、(4分)若关于的分式方程的根是正数,则实数的取值范围是().
A.,且B.,且
C.,且D.,且
7、(4分)
A.B.C.D.
8、(4分)已知点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数的图像上,当x1<x2<0<x3时,y1、y2、y3的大小关系( )
A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在△ABC中,AC=BC=,AB=2,则△ABC中的最小角是_____.
10、(4分)一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为_____.
11、(4分)若代数式在实数范围内有意义,则x的取值范围是_____.
12、(4分)如图,在口ABCD中,E为边BC上一点,以AE为边作矩形AEFG.若∠BAE=40°,∠CEF=15°,则∠D的大小为_____度.
13、(4分)函数中,自变量x的取值范围是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:
(1)此次共调查了 名学生;
(2)扇形统计图中D所在扇形的圆心角为 ;
(3)将上面的条形统计图补充完整;
(4)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.
15、(8分)如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).
(1)求点D的坐标.
(2)求直线BC的解析式.
(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.
16、(8分)计算
(1)
(2);
17、(10分)(2010•清远)正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.
18、(10分)如图,在中,.
用圆规和直尺在AC上作点P,使点P到A、B的距离相等保留作图痕迹,不写作法和证明
当满足的点P到AB、BC的距离相等时,求的度数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果关于x的方程(m+2)x=8无解,那么m的取值范围是_____.
20、(4分)点在函数的图象上,则__________
21、(4分)如图,利用函数图象可知方程组的解为______.
22、(4分)如图,在中,分别以点、为圆心,大于的长为半径作弧,两弧交于点、,作直线交于点,连接,若,,则与之间的函数关系式是___________.
23、(4分)计算:=___________
二、解答题(本大题共3个小题,共30分)
24、(8分)计算
(1)
(2).
25、(10分)如图,□ABCD中,在对角线BD上取E、F两点,使BE=DF,连AE,CF,过点E作EN⊥FC交FC于点N,过点F作FM⊥AE交AE于点M;
(1)求证:△ABE≌△CDF;
(2)判断四边形ENFM的形状,并说明理由.
26、(12分)在同一坐标系中,画出函数与的图像,观察图像写出当时,的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据中心对称的概念对各小题分析判断,然后利用排除法求解.
【详解】
(1)正方形绕中心旋转能与自身重合;
(2)等边三角形不能绕某点旋转与自身重合;
(3)矩形绕中心旋转能与自身重合;
(4)直角不能绕某个点旋转能与自身重合;
(5)平行四边形绕中心旋转能与自身重合;
综上所述,绕某个点旋转能与自身重合的图形有(1)(3)(5)共3个.
故选:.
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转后两部分重合.
2、B
【解析】
根据平移的性质分别求出a、b的值,计算即可.
【详解】
解:点A的横坐标为-1,点C的横坐标为1,
则线段AB先向右平移2个单位,
∵点B的横坐标为1,
∴点D的横坐标为3,即b=3,
同理,a=3,
∴a+b=3+3=6,
故选:B.
本题考查的是坐标与图形变化-平移,掌握平移变换与坐标变化之间的规律是解题的关键.
3、B
【解析】
根据根的判别式判断①;根据一元二次方程(为常数)最多有两个解判断②;将方程的解代入即可判断③.
【详解】
解:①
方程有两个相等的实数根.
①正确:
②一元二次方程(为常数)最多有两个解,
②错误;
③方程的解为,
将x=-2代人得,
,
③正确.
故选:B.
本题考查的知识点是一元二次方程根的情况,属于比较基础的题目,易于掌握.
4、C
【解析】
根据平行四边形的判定方法逐一进行分析判断即可.
【详解】
A. AB=DC,AD=BC,根据两组对边分别平行的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;
B. AD∥BC,AD=BC,根据一组对边平行且相等的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;
C. AB∥DC,AD=BC,一组对边平行,另一组对边平行的四边形可能是平行四边形也可能是等腰梯形,故符合题意;
D. OA=OC,OD=OB,根据对角线互相平分的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意,
故选C.
本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
5、D
【解析】
先设AC=b,BC=a,AB=c,根据勾股定理有c2+b2=a2,再根据等式性质可得c2+b2=a2,再根据等边三角形的性质以及特殊三角函数值,易求得S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,从而可得S1+S2=S3,易求S1.
【详解】
解:如图,设等边三角形△A'BC,△AB'C,△ABC'的面积分别是S3,S2,S1,
设AC=b,BC=a,AB=c,
∵△ABC是直角三角形,且∠BAC=90度,
∴c2+b2=a2,
∴c2+b2=a2,
又∵S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,
∴S1+S2=S3,
∵S3=8,S2=3,
∴S1=S3−S2=8−3=5,
故选:D.
本题考查了勾股定理,等边三角形的性质、特殊三角函数值的应用.解题关键是根据等边三角形的性质求出每一个三角形的面积.
6、D
【解析】
分析:利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.
详解:方程两边同乘1(x﹣1)得:
m=1(x-1)﹣4(x-1),解得:x=.
∵≠1,∴m≠1,由题意得:>0,解得:m<6,实数m的取值范围是:m<6且m≠1.
故选D.
点睛:本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.
7、C
【解析】
根据根式的减法运算,首先将 化简,再进行计算.
【详解】
解:
故选C
本题主要考查根式的减法,关键在于化简,应当熟练掌握.
8、C
【解析】
在反比例函数的图象在二四象限,根据x1<x2<0<x3,可以确定点(x1,y1)、(x2,y2)、(x3,y3)所在象限,根据反比例函数的图象和性质,可以确定y1、y2、y3的大小关系.
【详解】
∵反比例函数的图象在二、四象限,在每个象限内y随x的增大而增大,
又∵x1<x2<0<x3,
∴点,和,在第二象限、而,在第四象限,
于是有:0<<,而<0,
因此,<<,
故选:C.
本题考查了反比例函数的性质,反比例函数图象上点的坐标特点,先根据题意判断出函数图象在二、四象限是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、45°.
【解析】
根据勾股定理得到逆定理得到△ABC是等腰直角三角形,根据等腰直角三角形的性质即可的结论.
【详解】
解:∵AC=BC=,AB=2,
∴AC2+BC2=2+2=4=22=AB2,
∴△ABC是等腰直角三角形,
∴△ABC中的最小角是45°;
故答案为:45°.
本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.
10、1
【解析】
根据菱形对角线互相垂直平分可得AO=OC,BO=OD,△ABO为Rt△;在Rt△ABO中,已知AB,AO的长,即可求BO的长,根据BO的长即可求BD的长.
【详解】
如图,由题意知,AB=5,AC=6,
∴AO=OC=3,
∵菱形对角线互相垂直平分,
∴△ABO为直角三角形,
在Rt△ABO中,AB=5,AO=3,
∴BO==4,
故BD=2BO=1,
故答案为: 1.
本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.
11、x≤
【解析】
∵代数式在实数范围内有意义,
∴,解得:.
故答案为:.
12、1
【解析】
想办法求出∠B,利用平行四边形的性质∠D=∠B即可解决问题.
【详解】
解:∵四边形AEFG是正方形,
∴∠AEF=90°,
∵∠CEF=15°,
∴∠AEB=180°-90°-15°=75°,
∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=1°,
∵四边形ABCD是平行四边形,
∴∠D=∠B=1°
故答案为:1.
本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
13、.
【解析】
∵在实数范围内有意义,
∴
∴
故答案为
三、解答题(本大题共5个小题,共48分)
14、(1)120;(2)54°;(3)详见解析(4)1.
【解析】
(1)根据B的人数除以占的百分比即可得到总人数;
(2)先根据题意列出算式,再求出即可;
(3)先求出对应的人数,再画出即可;
(4)先列出算式,再求出即可.
【详解】
(1)(25+23)÷40%=120(名),
即此次共调查了120名学生,
故答案为120;
(2)360°×=54°,
即扇形统计图中D所在扇形的圆心角为54°,
故答案为54°;
(3)如图所示:
;
(4)800×=1(人),
答:估计对食品安全知识“非常了解”的学生的人数是1人.
本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.
15、(1)D(4,7)(2)y=(3)详见解析
【解析】
试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;
(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b(k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;
(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C的对称点时,△PCD为等腰三角形,然后求解即可.
试题解析:(1)x2﹣7x+12=0,
解得x1=3,x2=4,
∵OA>OB,
∴OA=4,OB=3,
过D作DE⊥y于点E,
∵正方形ABCD,
∴AD=AB,∠DAB=90°,
∠DAE+∠OAB=90°,
∠ABO+∠OAB=90°,
∴∠ABO=∠DAE,
∵DE⊥AE,
∴∠AED=90°=∠AOB,
∵DE⊥AE
∴∠AED=90°=∠AOB,
∴△DAE≌△ABO(AAS),
∴DE=OA=4,AE=OB=3,
∴OE=7,
∴D(4,7);
(2)过点C作CM⊥x轴于点M,
同上可证得△BCM≌△ABO,
∴CM=OB=3,BM=OA=4,
∴OM=7,
∴C(7,3),
设直线BC的解析式为y=kx+b(k≠0,k、b为常数),
代入B(3,0),C(7,3)得,,
解得,
∴y=x﹣;
(3)存在.
点P与点B重合时,P1(3,0),
点P与点B关于点C对称时,P2(11,6).
考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数
16、(1)+;(2)x1=5,x2=−1.
【解析】
(1)先算乘法,再合并同类二次根式即可;
(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
解:(1)原式=3−+2−2
=+;
(2)x2−4x−5=0,
(x−5)(x+1)=0,
x−5=0,x+1=0,
x1=5,x2=−1.
本题考查了二次根式的混合运算和解一元二次方程,能正确运用运算法则进行计算是解此题的关键.
17、y=x+.
【解析】
试题分析:由题意正比例函数y=kx过点A(1,2),代入正比例函数求出k值,从而求出正比例函数的解析式,由题意y=ax+b的图象都经过点A(1,2)、B(4,0),把此两点代入一次函数根据待定系数法求出一次函数的解析式.
解:由正比例函数y=kx的图象过点(1,2),
得:k=2,
所以正比例函数的表达式为y=2x;
由一次函数y=ax+b的图象经过点(1,2)和(4,0)
得
解得:a=,b=,
∴一次函数的表达式为y=x+.
考点:待定系数法求一次函数解析式.
18、(1)图形见解析(2)30°
【解析】
试题分析:(1)画出线段AB的垂直平分线,交AC于点P,点P即为所求;
(2)由点P到AB、BC的距离相等可得出PC=PD,结合BP=BP可证出Rt△BCP≌Rt△BDP(HL),根据全等三角形的性质可得出BC=BD,结合AB=2BD及∠C=90°,即可求出∠A的度数.
试题解析:
(1)依照题意,画出图形,如图所示.
(2)∵点P到AB、BC的距离相等,
∴PC=PD.
在Rt△BCP和Rt△BDP中,
,
∴Rt△BCP≌Rt△BDP(HL),
∴BC=BD.
又∵PD垂直平分AB,
∴AD=2BD=2BC.
在Rt△ABC中,∠C=90°,AB=2BC,
∴∠A=30°.
【点睛】本题考查了尺规作图、线段垂直平分线的性质、全等三角形的判定与性质以及解含30°角的直角三角形,解题的关键是:(1)熟练掌握尺规作图;(2)通过证全等三角形找出AB=2BC.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据一元一次方程无解,则m+1=0,即可解答.
【详解】
解:∵关于的方程无解,
∴m+1=0,
∴m=−1,
故答案为m=−1.
本题考查了一元一次方程的解,根据题意得出关于m的方程是解题关键.
20、
【解析】
把点A(m,m+5)代入得到关于m的一元一次方程,解之即可.
【详解】
解:把点A(m,m+5)代入得:
m+5=-2m+1
解得:m=.
本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.
21、
【解析】
观察函数的图象y=2x与x+ky=3相交于点(1,2),从而求解;
【详解】
观察图象可知,y=2x与x+ky=3相交于点(1,2),
可求出方方程组的解为,
故答案为:
此题主要考查一次函数与二元一次方程组,关键是能根据函数图象的交点解方程组.
22、
【解析】
由题意可判定PQ是AD的垂直平分线,根据线段垂直平分线的性质即得ED=EA,进一步可得∠A=∠ADE,再根据平行线的性质和平行四边形对角相等的性质即得结果.
【详解】
解:由题意可知,PQ是AD的垂直平分线,
∴ED=EA,
∴∠A=∠ADE,
∵四边形ABCD是平行四边形,
∴∠A=∠C=x°,AB∥CD,
∴∠A+∠ADC=180°,
即,
∴.
故答案为.
本题考查了对尺规作线段垂直平分线的理解和线段垂直平分线的性质以及平行四边形的性质,解题的关键是由作图语言正确判断PQ是AD的垂直平分线.
23、6
【解析】
先取绝对值符号、计算负整数指数幂和零指数幂,再计算加减可得;
【详解】
解:原式=1+1+4=6
故答案为:6
此题主要考查了实数运算,绝对值,负整数指数幂和零指数幂,正确化简各数是解题关键.
二、解答题(本大题共3个小题,共30分)
24、4+;6+
【解析】
(1)先根据二次根式的乘除法则运算,然后合并即可;
(2)先把各二次根式化为最简二次根式,然后合并即可.
【详解】
解:(1)原式=﹣+2=4﹣+2=4+;
(2)原式=5﹣+﹣1=4+.
考点:二次根式的混合运算
25、(1)见解析;(2)四边形ENFM是矩形.见解析.
【解析】
(1)根据SAS即可证明;
(2)只要证明三个角是直角即可解决问题;
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD
∴∠ABD=∠CDB,又∵BE=DF,
∴△ABE≌△CDF(SAS).
(2)由(1)得,∴∠AEB=∠CFD,
∴∠AED=∠CFB,
∴AE∥CF
又∵EN⊥CF,∠AEN=∠ENF=90°,
又∵FM⊥AE,∠FME=90°,
∴四边形ENFM是矩形.
本题考查平行四边形的性质、全等三角形的判定和性质、矩形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
26、画图见解析,当时,的取值范围为 .
【解析】
分析:(1)利用两点法作出一次函数的图象,根据图象直接确定自变量的取值范围即可.
详解:建立平面直角坐标系
过画该直线 (如图)过画该直线.(如图)
∵ 解得
∴两直线的交点为 (如图)
根据图象当时,的取值范围为.
点睛:本题考查了一次函数的图象,作一次函数的图象时,可以利用两点法作图.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2025届广东省佛山市南海区石门实验学校九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年重庆市外国语学校九上数学开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省深圳市外国语学校数学九上开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。