年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    广东省佛山市禅城区2024-2025学年数学九上开学考试模拟试题【含答案】

    立即下载
    加入资料篮
    广东省佛山市禅城区2024-2025学年数学九上开学考试模拟试题【含答案】第1页
    广东省佛山市禅城区2024-2025学年数学九上开学考试模拟试题【含答案】第2页
    广东省佛山市禅城区2024-2025学年数学九上开学考试模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省佛山市禅城区2024-2025学年数学九上开学考试模拟试题【含答案】

    展开

    这是一份广东省佛山市禅城区2024-2025学年数学九上开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列各组数中,是勾股数的为( )
    A.B.0.6,0.8,1.0
    C.1,2,3D.9,40,41
    2、(4分)如图,在六边形中,,分别平分,则的度数为( )
    A.B.C.D.
    3、(4分)如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为( )
    A.9B.10C.12D.14
    4、(4分)如果一个多边形的内角和等于720°,则这个多边形是( )
    A.四边形B.五边形C.六边形D.七边形
    5、(4分)若一个正多边形的一个内角是135°,则这个正多边形的边数是( )
    A.10B.9C.8D.6
    6、(4分)下列图象中,不能表示是的函数的是( )
    A.B.C.D.
    7、(4分)在某市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程(米)与时间(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是( )
    A.这次比赛的全程是500米
    B.乙队先到达终点
    C.比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快
    D.乙与甲相遇时乙的速度是375米/分钟
    8、(4分)一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( )
    A.平均数B.众数C.中位数D.方差
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.
    10、(4分)如图,已知直线:与直线:相交于点,直线、分别交轴于、两点,矩形的顶点、分别在、上,顶点、都在轴上,且点与点重合,那么 __________________.
    11、(4分)若分式 的值为零,则 _____.
    12、(4分)已知不等式组的解集为,则的值是________.
    13、(4分)如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,△ABC中,A(﹣1,1),B(﹣4,2),C(﹣3,4).
    (1)在网格中画出△ABC向右平移5个单位后的图形△A1B1C1;
    (2)在网格中画出△ABC关于原点O成中心对称后的图形△A2B2C2;
    (3)在x轴上找一点P使PA+PB的值最小请直接写出点P的坐标.
    15、(8分)已知三角形纸片ABC,其中∠C=90°,AB=10,BC=6,点E,F分别是AC,AB上的点,连接EF.
    (1)如图1,若将纸片ABC沿EF折叠,折叠后点A刚好落在AB边上点D处,且S△ADE=S四边形BCED,求ED的长;
    (2)如图2,若将纸片ABC沿EF折叠,折叠后点A刚好落在BC边上点M处,且EM∥AB.
    ①试判断四边形AEMF的形状,并说明理由;
    ②求折痕EF的长.
    16、(8分)如图,在△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,AB=70cm,求△ABM的面积.
    17、(10分)为迎接购物节,某网店准备购进甲、乙两种运动鞋,甲种运动鞋每双的进价比乙种运动鞋每双的进价多60元,用30000元购进甲种运动鞋的数量与用21000元购进乙种运动鞋的数量相同.
    (1)求甲、乙两种运动鞋的进价(用列分式方程的方法解答):
    (2)该网店老板计划购进这两种运动鞋共200双,且甲种运动鞋的进货数量不少于乙种运动鞋数量的,甲种运动鞋每双售价为350元,乙种运动鞋每双售价为300元.设甲种运动鞋的进货量为m双,销售完甲、乙两种运动鞋的总利润为w元,求w与m的函数关系式,并求总利润的最大值.
    18、(10分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
    (1)求抛物线的解析式;
    (2)猜想△EDB的形状并加以证明.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如果关于x的方程+1有增根,那么k的值为_____
    20、(4分)若某组数据的方差计算公式是S2=[(7-)+(4-)2+(3-)2+(6-)2],则公式中=______.
    21、(4分)已知双曲线经过点(-1,2),那么k的值等于_______.
    22、(4分)顺次连结任意四边形各边中点所得到的四边形一定是 .
    23、(4分)一元二次方程的根是_____________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在矩形ABCD中,E是AD上一点,MN垂直平分BE,分别交AD,BE,BC于点M,O,N,连接BM,EN
    (1)求证:四边形BMEN是菱形.
    (2)若AE=8,F为AB的中点,BF+OB=8,求MN的长.
    25、(10分)某公司对应聘者A,B,进行面试,并按三个方面给应聘者打分,每方面满分20分,最后打分结果如下表,
    根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:3:1的比例确定各人的成绩,此时谁将被录用?
    26、(12分)计算
    (1); (2).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据勾股数的定义进行分析,从而得到答案.
    【详解】
    解:A、不是,因()2+()2≠()2;
    B、不是,因为它们不是正整数
    C、不是,因为12+22≠32;
    D、是,因为92+402=412;且都是正整数.
    故选:D.
    此题考查勾股定理的逆定理和勾股数的定义,解题关键在于掌握三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.
    2、A
    【解析】
    由多边形内角和定理求出∠A+∠B+∠E+∠F+∠CDE+∠BCD=720°①,由角平分线定义得出∠BCP=∠DCP,∠CDP=∠PDE,根据三角形内角和定理得出∠P+∠PCD+∠PDE=180°,得出2∠P+∠BCD+∠CDE=360°②,由①和②即可求出结果.
    【详解】
    在六边形 A BCDEF中,
    ∠A+∠B+∠E+∠F+∠CDE+∠BCD=(6-2)×180°=720°①,
    CP、DP分別平分∠BCD、∠CDE,
    ∴∠BCP=∠DCP,∠CDP=∠PDE,
    ∠P+∠PCD+∠PDE=180°,
    ∴2(∠P+∠PCD+∠PDE)=360°,
    即2∠P+∠BCD+∠CDE=360°②,
    ①-②得:∠A+∠B+∠E+∠F-2∠P=360°,
    即α-2∠P=360°,
    ∴∠P=α-180°,
    故选:A.
    本题考查了多边形内角和定理、角平分线定义以及三角形内角和定理;熟记多边形内角和定理和三角形内角和定理是解题关键.
    3、A
    【解析】
    利用平行四边形的性质即可解决问题.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=3,OD=OB==2,OA=OC=4,
    ∴△OBC的周长=3+2+4=9,
    故选:A.
    题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.
    4、C
    【解析】
    试题分析:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=1.则这个正多边形的边数是1.故选C.
    考点:多边形内角与外角.
    5、C
    【解析】
    根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.
    【详解】
    ∵正多边形的一个内角是135°,
    ∴该正多边形的一个外角为45°,
    ∵多边形的外角之和为360°,
    ∴边数==1,
    ∴这个正多边形的边数是1.
    故选:C.
    本题主要考查正多边形内角与外角度数,掌握多边形的外角之和为360°,是解题的关键.
    6、D
    【解析】
    根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,可得答案.
    【详解】
    A、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A不符合题意;
    B、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B不符合题意;
    C、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不符合题意;
    D、不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D符合题意;
    故选:D.
    考查了函数的定义,利用了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
    7、C
    【解析】
    由横纵坐标可判断A、B,观察图象比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面可判断C,由图象得乙队在1.1至1.9分钟的路程为300米,可判断D.
    【详解】
    由纵坐标看出,这次龙舟赛的全程是500m,故选项A正确;
    由横坐标可以看出,乙队先到达终点,故选项B正确;
    ∵比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面,
    ∴乙队的速度比甲队的速度慢,故C选项错误;
    ∵由图象可知,乙队在1.1分钟后开始加速,加速的总路程是500-200=300(米),加速的时间是1.9-1.1=0.8(分钟),
    ∴乙与甲相遇时,乙的速度是300÷0.8=375(米/分钟),故D选项正确.
    故选C.
    本题主要考查一次函数的图象与实际应用,观察图象理解图象中每个特殊点的实际意义是解题的关键.
    8、D
    【解析】
    依据平均数、中位数、众数、方差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.
    【详解】
    原数据的3,4,4,5的平均数为,
    原数据的3,4,4,5的中位数为4,
    原数据的3,4,4,5的众数为4,
    原数据的3,4,4,5的方差为×[(3-4)2+(4-4)2×2+(5-4)2]=0.5;
    新数据3,4,4,4,5的平均数为,
    新数据3,4,4,4,5的中位数为4,
    新数据3,4,4,4,5的众数为4,
    新数据3,4,4,4,5的方差为×[(3-4)2+(4-4)2×3+(5-4)2]=0.4;
    ∴添加一个数据4,方差发生变化,
    故选D.
    本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    ∵AB=5,AD=12,
    ∴根据矩形的性质和勾股定理,得AC=13.
    ∵BO为Rt△ABC斜边上的中线
    ∴BO=6.5
    ∵O是AC的中点,M是AD的中点,
    ∴OM是△ACD的中位线
    ∴OM=2.5
    ∴四边形ABOM的周长为:6.5+2.5+6+5=1
    故答案为1
    10、2:5
    【解析】
    把y=0代入l1解析式求出x的值便可求出点A的坐标.令x=0代入l2的解析式求出点B的坐标.然后可求出AB的长.联立方程组可求出交点C的坐标,继而求出三角形ABC的面积,再利用xD=xB=2易求D点坐标.又已知yE=yD=2可求出E点坐标.故可求出DE,EF的长,即可得出矩形面积.
    【详解】
    解:由 x+=0,得x=-1.
    ∴A点坐标为(-1,0),
    由-2x+16=0,得x=2.
    ∴B点坐标为(2,0),
    ∴AB=2-(-1)=3.
    由 ,解得,
    ∴C点的坐标为(5,6),
    ∴S△ABC=AB•6=×3×6=4.
    ∵点D在l1上且xD=xB=2,
    ∴yD=×2+=2,
    ∴D点坐标为(2,2),
    又∵点E在l2上且yE=yD=2,
    ∴-2xE+16=2,
    ∴xE=1,
    ∴E点坐标为(1,2),
    ∴DE=2-1=1,EF=2.
    ∴矩形面积为:1×2=32,
    ∴S矩形DEFG:S△ABC=32:4=2:5.
    故答案为:2:5.
    此题主要考查了一次函数交点坐标求法以及图象上点的坐标性质等知识,根据题意分别求出C,D两点的坐标是解决问题的关键.
    11、-1
    【解析】
    直接利用分式的值为 0,则分子为 0,分母不为 0,进而得出答案.
    【详解】
    解:∵分式的值为零,

    解得:.
    故答案为:﹣1.
    本题考查分式的值为零的条件,正确把握定义是解题的关键.
    12、
    【解析】
    根据不等式的解集求出a,b的值,即可求解.
    【详解】
    解得
    ∵解集为
    ∴=1,3+2b=-1,
    解得a=1,b=-2,
    ∴=2×(-3)=-6
    此题主要考查不等式的解集,解题的关键是熟知不等式的性质及解集的定义.
    13、1.
    【解析】
    试题分析:延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.
    解:连接AE,并延长交CD于K,
    ∵AB∥CD,
    ∴∠BAE=∠DKE,∠ABD=∠EDK,
    ∵点E、F、G分别是BD、AC、DC的中点.
    ∴BE=DE,
    在△AEB和△KED中,

    ∴△AEB≌△KED(AAS),
    ∴DK=AB,AE=EK,EF为△ACK的中位线,
    ∴EF=CK=(DC﹣DK)=(DC﹣AB),
    ∵EG为△BCD的中位线,∴EG=BC,
    又FG为△ACD的中位线,∴FG=AD,
    ∴EG+GF=(AD+BC),
    ∵两腰和是12,即AD+BC=12,两底差是6,即DC﹣AB=6,
    ∴EG+GF=6,FE=3,
    ∴△EFG的周长是6+3=1.
    故答案为:1.
    点评:此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)见解析;(3)(-1,0),图见解析
    【解析】
    (1)分别作出A,B,C的对应点A1,B1,C1即可.
    (2)分别作出A,B,C的对应点A2,B2,C2即可.
    (3)作点关于x轴的对称点A′,连接BA′交X轴于点P,点P即为所求.
    【详解】
    (1)△A1B1C1如图所示.
    (2)△A2B2C2如图所示.
    (3)点P即为所求.
    本题考查作图﹣旋转变换,平移变换,轴对称最短问题等知识,解题的关键是熟练掌握基本知识.
    15、(1)DE=1;(2)①四边形AEMF是菱形,证明见解析;②
    【解析】
    (1)先利用折叠的性质得到EF⊥AB,△AEF≌△DEF,则S△AEF=S△DEF,则易得S△ABC=1S△AEF,再证明Rt△AEF∽Rt△ABC,然后根据相似三角形的性质得到两个三角形面积比和AB,AE的关系,再利用勾股定理求出AB即可得到AE的长;
    (2)①根据四边相等的四边形是菱形证明即可;
    ②设AE=x,则EM=x,CE=8−x,先证明△CME∽△CBA得到关于x的比例式,解出x后计算出CM的值,再利用勾股定理计算出AM,然后根据菱形的面积公式计算EF.
    【详解】
    (1)∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,
    ∴EF⊥AB,△AEF≌△DEF,
    ∴S△AEF=S△DEF,
    ∵S△ADE=S四边形BCDE,
    ∴S△ABC=4S△AEF,
    在Rt△ABC中,∵∠ACB=90,AB=10,BC=6,
    ∴AC=8,
    ∵∠EAF=∠BAC,
    ∴Rt△AEF∽Rt△ABC,
    ∴,即,
    ∴AE=1(负值舍去),
    由折叠知,DE=AE=1.
    (2)①如图2中,∵△ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,
    ∴AE=EM,AF=MF,∠AFE=∠MFE,
    ∵ME∥AB,
    ∴∠AFE=∠FEM
    ∴∠MFE=∠FEM,
    ∴ME=MF,
    ∴AE=EM=MF=AF,
    ∴四边形AEMF为菱形.
    ②设AE=x,则EM=x,CE=8−x,
    ∵四边形AEMF为菱形,
    ∴EM∥AB,
    ∴△CME∽△CBA,
    ∴,
    即,
    解得x=,CM=,
    在Rt△ACM中,AM=,
    ∵S菱形AEMF=EF•AM=AE•CM,
    ∴EF=2×.
    本题考查了相似形的综合题:熟练掌握折叠的性质和菱形的判定与性质;灵活构建相似三角形,运用勾股定理或相似比表示线段之间的关系和计算线段的长.解决此类题目时要各个击破.本题有一定难度,证明三角形相似和运用勾股定理得出方程是解决问题的关键,属于中考常考题型.
    16、△ABM的面积是700cm2.
    【解析】
    过M作ME⊥AB于E,根据角平分线上的点到角的两边的距离相等可得CM=ME,即可解答
    【详解】
    过M作ME⊥AB于E,
    ∵∠C=90°,AM平分∠CAB,CM=20cm,
    ∴CM=ME=20cm,
    ∴△ABM的面积是 ×AB×ME=×70cm×20cm=700cm2.
    此题考查角平分线的性质和三角形面积,解题关键在于利用角平分线的性质求出CM=ME
    17、(1)甲、乙两种运动鞋的进价分别为200元/双、140元/双;(2)w与m的函数关系式是w=﹣10m+32000,总利润的最大值是31500元.
    【解析】
    (1)根据用30000元购进甲种运动鞋的数量与用21000元购进乙种运动鞋的数量相同,可以得到相应的分式方程,从而可以解答本题;
    (2)根据题意,可以得到w与m的函数关系式,再根据甲种运动鞋的进货数量不少于乙种运动鞋数量的,可以得到m的取值范围,最后根据一次函数的性质即可得到w的最大值.
    【详解】
    解:(1)设甲种运动鞋的价格是每双x元,则乙种运动鞋每双价格是(x﹣60)元,

    解得,x=200,
    经检验,x=200是原分式方程的解,
    ∴x﹣60=140,
    答:甲、乙两种运动鞋的进价分别为200元/双、140元/双;
    (2)由题意可得,
    w=(350﹣200)m+(300﹣140)×(200﹣m)=﹣10m+32000,
    ∵甲种运动鞋的进货数量不少于乙种运动鞋数量的,
    ∴m≥(200﹣m),
    解得,m≥50,
    ∴当m=50时,w取得最大值,此时w=31500,
    答:w与m的函数关系式是w=﹣10m+32000,总利润的最大值是31500元.
    本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用不等式的性质和一次函数的性质解答,注意分式方程要检验.
    18、(1)y=—x2+3x;(2)△EDB为等腰直角三角形,见解析.
    【解析】
    (1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
    (2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;
    【详解】
    (1)在矩形OABC中,OA=4,OC=3,
    ∴A(4,0),C(0,3),
    ∵抛物线经过O、A两点,顶点在BC边上,
    ∴抛物线顶点坐标为(2,3),
    ∴可设抛物线解析式为y=a(x﹣2)2+3,
    把A点坐标代入可得0=a(4﹣2)2+3,解得a=-,
    ∴抛物线解析式为y=—(x﹣2)2+3,即y=—x2+3x;
    (2)△EDB为等腰直角三角形.
    证明:
    由(1)可知B(4,3),且D(3,0),E(0,1),
    ∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,
    ∴DE2+BD2=BE2,且DE=BD,
    ∴△EDB为等腰直角三角形.
    此题考查二次函数综合题,解题关键在于利用勾股定理逆定理进行求证.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、4
    【解析】
    分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出k的值.
    【详解】
    去分母得:1=k-3+x-2,
    由分式方程有增根,得到x-2=0,即x=2,
    把x=2代入整式方程得:k=4,
    故答案为4
    此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
    20、1.
    【解析】
    根据代表的是平均数,利用平均数的公式即可得出答案.
    【详解】
    由题意,可得.
    故答案为:1.
    本题主要考查平均数,掌握平均数的公式是解题的关键.
    21、-1
    【解析】
    分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入,得:,解得:k=-1.
    22、平行四边形
    【解析】
    试题分析:由三角形的中位线的性质,平行与第三边且等于第三边的一半,根据一组对边平行且相等的四边形是平行四边形.
    考点:平行四边形的判定
    23、,
    【解析】
    先把-2移项,然后用直接开平方法求解即可.
    【详解】
    ∵,
    ∴,
    ∴x+3=±,
    ∴,.
    故答案为:,.
    本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)证明见解析;(2)MN=.
    【解析】
    (1)先根据线段垂直平分线的性质证明MB=ME,由ASA证明△BON≌△EOM,得出ME=NB,证出四边形BMEN是平行四边形,再根据菱形的判定即可得出结论;
    (2)根据已知条件得到AB+BE=2BF+2OB=16,设AB=x,则BE=16﹣x,根据勾股定理得到x=6,求得BE=16﹣x=10,OB=BE=5,设ME=y,则AM=8﹣y,BM=ME=y,根据勾股定理即可得到结论.
    【详解】
    (1)证明:∵MN垂直平分BE,
    ∴MB=ME,OB=OE,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠MEO=∠NBO,
    在△BON与△EOM中,,
    ∴△BON≌△EOM(ASA),
    ∴ME=NB,
    又∵AD∥BC,
    ∴四边形BMEN是平行四边形,
    又∵MB=ME,
    ∴四边形BMEN是菱形;
    (2)解:∵O,F分别为MN,AB的中点,
    ∴OF∥AD,
    ∴∠OFB=∠EAB=90°,
    ∵BF+OB=8,
    ∴AB+BE=2BF+2OB=16,
    设AB=x,则BE=16﹣x,
    在Rt△ABE中,82+x2=(16﹣x)2,
    解得x=6,
    ∴BE=16﹣x=10,
    ∴OB=BE=5,
    设ME=y,则AM=8﹣y,BM=ME=y,
    在Rt△ABM中,62+(8﹣y)2=y2,
    解得y=,
    在Rt△BOM中,MO==,
    ∴MN=2MO=.
    本题主要考查菱形的判定及性质,勾股定理,掌握菱形的判定方法及性质,结合勾股定理合理的利用方程的思想是解题的关键.
    25、B应被录用
    【解析】
    根据加权平均数计算A,B两名应聘者的最后得分,看谁的分数高,分数高的就录用.
    【详解】
    解:∵6:3:1=60%:30%:10%,
    ∴A的最后得分为,
    B的最后得分为,
    ∵16.7>15,
    ∴B应被录用.
    本题考查了加权平均数的概念,在本题中专业知识、工作经验、仪表形象的权重不同,因而不能简单地平均,而应将各人的各项成绩乘以权之后才能求出最后的得分.
    26、(1);(2).
    【解析】
    (1)先根据二次根式的性质进行化简,再去括号进行运算,即可得到答案;
    (2)先根据二次根式的性质进行化简,进行运算,即可得到答案.
    【详解】
    (1)
    =
    =
    =2
    (2)
    =
    =
    本题考查二次根式的混合运算,解题的关键是先化简再进行计算.
    题号





    总分
    得分

    专业知识
    工作经验
    仪表形象
    A
    14
    18
    12
    B
    18
    16
    11

    相关试卷

    广东省东莞虎门汇英学校2024-2025学年九上数学开学考试模拟试题【含答案】:

    这是一份广东省东莞虎门汇英学校2024-2025学年九上数学开学考试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届广东省佛山市乐从镇数学九上开学达标检测模拟试题【含答案】:

    这是一份2025届广东省佛山市乐从镇数学九上开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广东省佛山市南海区里水镇数学九上开学调研试题【含答案】:

    这是一份2024-2025学年广东省佛山市南海区里水镇数学九上开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map