广东省佛山市顺德区容桂中学2024-2025学年九年级数学第一学期开学复习检测试题【含答案】
展开
这是一份广东省佛山市顺德区容桂中学2024-2025学年九年级数学第一学期开学复习检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)关于的方程有两个不相等的实根、,且有,则的值是( )
A.1B.-1C.1或-1D.2
2、(4分)以下列长度的三条线段为边,能组成直角三角形的是( )
A.6,7,8B.2,3,4C.3,4,6D.6,8,10
3、(4分)下列命题的逆命题成立的是( )
A.对顶角相等B.等边三角形是锐角三角形
C.正方形的对角线互相垂直D.平行四边形的对角线互相平分
4、(4分)已知数据:1,2,0,2,﹣5,则下列结论错误的是( )
A.平均数为0B.中位数为1C.众数为2D.方差为34
5、(4分)已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段OP的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是( )
A.B.C.D.
6、(4分)用配方法解方程x2﹣6x+3=0,下列变形正确的是( )
A.(x﹣3)2=6B.(x﹣3)2=3C.(x﹣3)2=0D.(x﹣3)2=1
7、(4分)不等式x≥2的解集在数轴上表示为( )
A.B.
C.D.
8、(4分)已知x1,x2是方程的两个根,则的值为( )
A.1B.-1C.2D.-2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打_____折.
10、(4分)在比例尺为1:5000的地图上,量得甲,乙两地的距离为30cm,则甲,乙两地的实际距离是__________千米.
11、(4分)如图,已知函数y=2x和函数y=的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则k=_____,满足条件的P点坐标是_________________.
12、(4分)若关于有增根,则_____;
13、(4分)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为___.
三、解答题(本大题共5个小题,共48分)
14、(12分)在某超市购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元.购买10件甲商品和10件乙商品需要多少元?
15、(8分)解下列各题:
(1)计算:
(2)解方程:(x+1)(x-1)=4x-1
16、(8分)如图,在平面直角坐标系中,A(0,8),B(﹣4,0),线段AB的垂直平分线CD分别交AB、OA于点C、D,其中点D的坐标为(0,3).
(1)求直线AB的解析式;
(2)求线段CD的长;
(3)点E为y轴上一个动点,当△CDE为等腰三角形时,求E点的坐标.
17、(10分)已知,反比例函数y=的图象和一次函数的图象交于A、B两点,点A的横坐标是-1,点B的纵坐标是-1.
(1)求这个一次函数的表达式;
(2)若点P(m,n)在反比例函数图象上,且点P关于x轴对称的点Q恰好落在一次函数的图象上,求m2+n2的值;
(3)若M(x1,y1),N(x2,y2)是反比例函数在第一象限图象上的两点,满足x2-x1=2,y1+y2=3,求△MON的面积.
18、(10分)如图,在中,,,,.
求的周长;
判断是否是直角三角形,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一次函数y=kx+b图象如图,当y>0时,x的取值范围是___________ .
20、(4分)如图,点B、C分别在直线y=2x和直线y=kx上,A、D是x轴上两点,若四边形ABCD为矩形,且AB:AD=1:2,则k的值是_____.
21、(4分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95、90、88,则小彤这学期的体育成绩为______分.
22、(4分)当k=_____时,100x2﹣kxy+49y2是一个完全平方式.
23、(4分)如果乘坐出租车所付款金额(元)与乘坐距离(千米)之间的函数图像由线段、线段和射线组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为__________元.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,△ABC中AC=BC,点D,E在AB边上,连接CD,CE.
(1)如图1,如果∠ACB=90°,把线段CD逆时针旋转90°,得到线段CF,连接BF,
①求证:△ACD≌△BCF;
②若∠DCE=45°, 求证:DE2=AD2+BE2;
(2)如图2,如果∠ACB=60°,∠DCE=30°,用等式表示AD,DE,BE三条线段的数量关系,说明理由.
25、(10分)(1)化简:;(2)解方程:;(3)用配方法解方程:x2-8x=84;(4)用公式法解方程:2x2+3x-1=0
26、(12分)已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)相交于A和B两点,且A点坐标为(1,1),B点的横坐标为﹣1.
(1)求反比例函数和一次函数的解析式;
(2)根据图象直接写出使得y1>y2时,x的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据根的判别式及一元二次方程的定义求得a的取值范围,再根据一元二次方程根与系数的关系求得的值,再利用列出以a为未知数的方程,解方程求得a值,由此即可解答.
【详解】
∵关于的方程有两个不相等的实根、,
∴△=(3a+1)2-8a(a+1)=(a-1)2>0,, a≠0,
∴a≠1且a≠0 ,
∵,
∴,
解得a=±1,
∴a=-1.
故选B.
本题主要考查了根与系数的关系、根的判别式,利用根的判别式确定a的取值及利用根与系数的关系列出方程求得a的值是解决问题的关键.
2、D
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A、∵62+72≠82,∴不能构成直角三角形,故本选项错误;
B、∵22+32≠42,∴不能构成直角三角形,故本选项错误;
C、∵32+42≠62,∴不能构成直角三角形,故本选项错误;
D、∵62+82=102,∴能构成直角三角形,故本选项正确.
故选:D.
本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
3、D
【解析】
利用对顶角的性质、锐角三角形的定义、正方形的性质及平行四边形的性质分别判断后即可确定正确的选项.
【详解】
解:A、逆命题为相等的角是对顶角,不成立;
B、逆命题为:锐角三角形是等边三角形,不成立;
C、逆命题为:对角线互相垂直的四边形是正方形,不成立;
D、逆命题为:对角线互相平分的四边形是平行四边形,成立,
故选:D.
考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.
4、D
【解析】
根据平均数、方差的计算公式和中位数、众数的定义分别进行解答,即可得出答案.
【详解】
A.这组数据:1,2,0,2,﹣5的平均数是:(1+2+0+2-5)÷5=0,故本选项正确;
B.把这组数按从小到大的顺序排列如下:-5,0,1,2,2,可观察1处在中间位置,所以中位数为1,故本选项正确;
C.观察可知这组数中出现最多的数为2,所以众数为2,故本选项正确;
D. ,故本选项错误,
所以选D
本题考查众数,算术平均数,中位数,方差;熟练掌握平均数、方差的计算公式和中位数、众数的定义是解决本题的关键.由于它们的计算由易到难为众数、中位数、算术平方根、方差,所以考试时可按照这样的顺序对选项进行判断,例如本题前三个选项正确,直接可以选D,就可以不用计算方差了.
5、D
【解析】
通过点经过四边形各个顶点,观察图象的对称趋势问题可解.
【详解】
、选项路线都关于对角线对称,因而函数图象应具有对称性,故、错误,对于选项点从到过程中的长也存在对称性,则图象前半段也应该具有对称特征,故错误.
故选:.
本题动点问题的函数图象,考查学生对动点运动过程中所产生函数图象的变化趋势判断.解答关键是注意动点到达临界前后的图象变化.
6、A
【解析】
把常数项3移到等号的右边,再在等式的两边同时加上一次项系数﹣6的一半的平方,配成完全平方的形式,从而得出答案.
【详解】
解:∵x2﹣6x+3=0,
∴x2﹣6x=﹣3,
∴x2﹣6x+9=6,即(x﹣3)2=6,
故选:A.
本题考查了一元二次方程的解法---配方法,熟练掌握配方的步骤是解题的关键
7、C
【解析】
根据不等式组解集在数轴上的表示方法就可得到.
【详解】
解:x≥2的解集表示在数轴上2右边且为包含2的数构成的集合,在数轴上表示为: 故答案为:C.
不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;
相关试卷
这是一份广东省佛山市顺德区容桂街道2023-2024学年七年级下学期期中数学试题(1),共6页。
这是一份广东省佛山市顺德区容桂街道2023-2024学年七年级下学期期中数学试题,共10页。试卷主要包含了作图,要求痕迹清晰,(本题满分6分))解等内容,欢迎下载使用。
这是一份广东省佛山市顺德区容桂中学2023-2024学年九上数学期末联考模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,已知点 、B,已知关于x的一元二次方程x2+, 见解析,B2,C2等内容,欢迎下载使用。