|试卷下载
终身会员
搜索
    上传资料 赚现金
    广东省广州市2024年数学九上开学检测模拟试题【含答案】
    立即下载
    加入资料篮
    广东省广州市2024年数学九上开学检测模拟试题【含答案】01
    广东省广州市2024年数学九上开学检测模拟试题【含答案】02
    广东省广州市2024年数学九上开学检测模拟试题【含答案】03
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省广州市2024年数学九上开学检测模拟试题【含答案】

    展开
    这是一份广东省广州市2024年数学九上开学检测模拟试题【含答案】,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列运算正确的是( )
    A.÷=2B.2×3=6
    C.+=D.3﹣=3
    2、(4分)教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、1.应该选( )参加.
    A.甲B.乙C.甲、乙都可以D.无法确定
    3、(4分)如图,在▱ABCD中,BE⊥AD于点E,BF⊥CD于点F,若BE=2,BF=3,▱ABCD的周长为20,则平行四边形的面积为( )
    A.12B.18C.20D.24
    4、(4分)下列因式分解正确的是( )
    A.2x2+4x=2(x2+2x)B.x2﹣y2=(x+y)(x﹣y)
    C.x2﹣2x+1=(x﹣2)2D.x2+y2=(x+y)2
    5、(4分)若一个等腰直角三角形的面积为8,则这个等腰三角形的直角边长为( )
    A.2B.4C.4D.8
    6、(4分)如图,▱ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是( )
    A.18B.10C.9D.8
    7、(4分)如图,已知中,,,将绕点顺时针方向旋转到的位置,连接,则的长为( )
    A.B.C.D.
    8、(4分)下列方程中,是关于x的一元二次方程的是( ).
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若分式的值为0,则x =_________________.
    10、(4分)如图,在中,,点D,E,F分别是AB,AC,BC边上的中点,连结BE,DF,已知则_________.
    11、(4分)如图,点B在线段AC上,且BC=2AB,点D,E分别是AB,BC的中点,分别以AB,DE,BC为边,在线段AC同侧作三个正方形,得到三个平行四边形(阴影部分).其面积分别记作S1,S2,S3,若S1+S3=15,则S2=_____.
    12、(4分)如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交于点P,反比例函数的图象经过P,D两点,则AB的长是______.
    13、(4分)如图,菱形ABCD的对角线AC=3cm,BD=4cm,则菱形ABCD的面积是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(1)因式分解:;
    (2)计算:
    15、(8分)如图1.点D,E在△ABC的边BC上.连接AD.AE.①AB=AC:②AD=AE:
    ③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论.构成三个命题:①②③;①③②,②③①.
    (1)以上三个命题是真命题的为(直接作答)__________________;
    (2)选择一个真命题进行证明(先写出所选命题.然后证明).
    16、(8分)如图,是等边三角形,,点是射线上任意点(点与点不重合),连接,将线段绕点顺时针旋转得到线段,连接并延长交直线于点.

    (1)如图①,猜想的度数是__________;
    (2)如图②,图③,当是锐角或钝角时,其他条件不变,猜想的度数,并选取其中一种情况进行证明;
    (3)如图③,若,,,则的长为__________.
    17、(10分)为了对学生进行多元化的评价,某中学决定对学生进行综合素质评价设该校中学生综合素质评价成绩为x分,满分为100分评价等级与评价成绩x分之间的关系如下表:
    现随机抽取该校部分学生的综合素质评价成绩,整理绘制成图、图两幅不完整的统计图请根据相关信息,解答下列问题:
    (1)在这次调查中,一共抽取了______名学生,图中等级为D级的扇形的圆心角等于______;
    (2)补全图中的条形统计图;
    (3)若该校共有1200名学生,请你估计该校等级为C级的学生约有多少名.
    18、(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:
    (1)慢车的速度为 km/h,快车的速度为 km/h;
    (2)解释图中点C的实际意义并求出点C的坐标;
    (3)求当x为多少时,两车之间的距离为500km.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,中,,,的垂直平分线分别交、于、,若,则________.
    20、(4分)如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=20°,则∠2=_____.
    21、(4分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是_____.
    22、(4分)对于任意非零实数a,b,定义“☆”运算为:a☆b=,若(x+1)☆x+(x+2)☆(x+1)+(x+3)☆(x+2)+…+(x+2018)☆(x+2017)=,则x=_____.
    23、(4分)已知直角三角形的周长为14,斜边上的中线长为3. 则直角三角形的面积为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平行四边形ABCD中,O是AB的中点,连接DO并延长交CB的延长线于点E,连接AE、DB.
    (1)求证:△AOD≌△BOE;
    (2)若DC=DE,判断四边形AEBD的形状,并说明理由.
    25、(10分)如图,以矩形的顶点为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系,已知,,将矩形绕点逆时针方向放置得到矩形.
    (1)当点恰好落在轴上时,如图1,求点的坐标.
    (2)连结,当点恰好落在对角线上时,如图2,连结,.
    ①求证:.
    ②求点的坐标.
    (3)在旋转过程中,点是直线与直线的交点,点是直线与直线的交点,若,请直接写出点的坐标.
    26、(12分)已知三角形纸片ABC,其中∠C=90°,AB=10,BC=6,点E,F分别是AC,AB上的点,连接EF.
    (1)如图1,若将纸片ABC沿EF折叠,折叠后点A刚好落在AB边上点D处,且S△ADE=S四边形BCED,求ED的长;
    (2)如图2,若将纸片ABC沿EF折叠,折叠后点A刚好落在BC边上点M处,且EM∥AB.
    ①试判断四边形AEMF的形状,并说明理由;
    ②求折痕EF的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据二次根式的除法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C、D进行判断.
    【详解】
    解:A、原式==2,所以A选项正确;
    B、原式=6×2=12,所以B选项错误;
    C、与不能合并,所以C选项错误;
    D、原式=2,所以D选项错误.
    故选:A.
    本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.
    2、A
    【解析】
    试题分析:由题意可得,甲的平均数为:(9+8+7+7+9)÷5=8;
    方差为:=0.8
    乙的平均数为:(10+8+9+7+1)÷5=8;
    方差为:=2;
    ∵0.8<2,∴选择甲射击运动员,故选A.
    考点:方差.
    3、A
    【解析】
    根据平行四边形的周长求出AD+CD,再利用面积列式求出AD、CD的关系,然后求出AD的长,再利用平行四边形的面积公式列式计算即可得解.
    【详解】
    解:∵▱ABCD的周长为20,
    ∴2(AD+CD)=20,
    ∴AD+CD=10①,
    ∵S▱ABCD=AD•BE=CD•BF,
    ∴2AD=3CD②,
    联立①、②解得AD=6,
    ∴▱ABCD的面积=AD•BE=6×2=1.
    故选:A.
    本题考查平行四边形的性质,解题的关键是掌握平行四边形的性质.
    4、B
    【解析】
    把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式,是否最简整式是关键和左右两边等式是否相等来判断
    【详解】
    A .2x2+4x=2(x2+2x)中(x2+2x)不是最简整式,还可以提取x,故A错误。
    B. x2﹣y2=(x+y)(x﹣y)既是最简,左右两边又相等,所以B正确
    C. x2﹣2x+1=(x﹣2)2满足了最简相乘,但是等式左右两边不相等
    D. x2+y2=(x+y)2满足了最简相乘,但是等式左右两边不相等
    主要考查因式分解的定义和整式的乘法
    5、C
    【解析】
    设等腰直角三角形的直角边长为x,根据面积为8,可列方程求解.
    解;设等腰直角三角形的边长为x,
    x2=8,
    x=1或x=-1(舍去).
    所以它的直角边长为1.
    故选C.
    “点睛”本题考查等腰直角三角形的性质,等腰直角三角形的两个腰相等,两腰夹角为90°,根据面积为8可列方程求解.
    6、C
    【解析】
    首先判断OE是△ACD的中位线,再由O,E分别为AC,AD的中点,得出,DE=AD=BC,DO=BD,AO=CO,再由△BCD的周长为18,可得OE+OD+ED=9,这样即可求出△DEO的周长.
    【详解】
    解:∵E为AD中点,四边形ABCD是平行四边形,
    ∴DE=AD=BC,DO=BD,AO=CO,
    ∴OE=CD,
    ∵△BCD的周长为18,
    ∴BD+DC+BC=18,
    ∴△DEO的周长是DE+OE+DO=(BC+DC+BD)=×18=9,
    故选:C.
    考核知识点:本题考查了平行四边形的性质及三角形的中位线定理,解答本题注意掌握中位线的性质及平行四边形对边相等、对角线互相平分的性质.
    7、B
    【解析】
    连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.
    【详解】
    解:如图,连接BB′,
    ∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,
    ∴AB=AB′,∠BAB′=60°,
    ∴△ABB′是等边三角形,
    ∴AB=BB′,
    在△ABC′和△B′BC′中,

    ∴△ABC′≌△B′BC′(SSS),
    ∴∠ABC′=∠B′BC′,
    延长BC′交AB′于D,
    则BD⊥AB′,
    ∵∠C=90°,,
    ∴AB= =4,
    ∴BD= ,
    C′D=2,
    ∴BC′=BD-C′D=.
    故选B.
    本题考查旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键.
    8、D
    【解析】
    只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.
    【详解】
    A、是关于x的一元一次方程,不符合题意;
    B、为二元二次方程,不符合题意;
    C、是分式方程,不符合题意;
    D、只含有一个未知数,未知数的最高次数是2,二次项系数不为1,是一元二次方程,符合题意;
    故选D.
    本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为1.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2
    【解析】
    根据分式值为0的条件进行求解即可.
    【详解】
    由题意,得x-2=0,
    解得:x=2,
    故答案为:2.
    本题考查了分式值为0的条件,熟练掌握“分式值为0时,分子为0用分母不为0”是解题的关键.
    10、1
    【解析】
    已知BE是Rt△ABC斜边AC的中线,那么BE=AC;EF是△ABC的中位线,则DF=AC,则DF=BE=1.
    【详解】
    解:,E为AC的中点,

    分别为AB,BC的中点,

    故答案为:1.
    此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.
    11、2
    【解析】
    设,根据正方形的性质、平行四边形的面积公式分别表示出,,,根据题意计算即可.
    【详解】
    解:设DB=x,
    则S1=x1,S1==1x1,S3= 1x×1x=4x1.
    由题意得,S1+S3=15,即x1+4x1=15,
    解得x1=3,
    所以S1=1x1=2,
    故答案为:2.
    本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是是解题的关键.
    12、2
    【解析】
    设D(m,),则P(2m,),作PH⊥AB于H.根据正方形性质,构建方程可解决问题.
    【详解】
    解:设D(m,),则P(2m,),作PH⊥AB于H.
    故答案为:2
    本题考核知识点:反比例函数的图象、正方形性质. 解题关键点:利用参数构建方程解决问题.
    13、11cm1
    【解析】
    利用菱形的面积公式可求解.
    【详解】
    解:因为菱形的对角线互相垂直平分,
    ∵AC=cm,BD=cm,
    则菱形ABCD的面积是cm1.
    故答案为11cm1.
    此题主要考查菱形的面积计算,关键是掌握菱形的面积计算方法.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y(x-2)2;(2) .
    【解析】
    (1)先提公因式,再利用完全平方公式矩形因式分解;
    (2)根据分式的减法运算法则计算.
    【详解】
    解:(1)x2y-4xy+4y
    =y(x2-4x+4)
    =y(x-2)2;
    (2)
    =
    =
    =
    = .
    故答案为:(1)y(x-2)2;(2) .
    本题考查因式分解、分式的加减运算,掌握提公因式法、完全平方公式因式分解、分式的加减法法则是解题的关键.
    15、(1)①②③;①③②;②③①. (2)见解析
    【解析】
    (1)根据真命题的定义即可得出结论,
    (2)根据全等三角形的判定方法及全等三角形的性质即可证明.
    【详解】
    解:(1)①②③;①③②;②③①.
    (2)如①③②
    AB=AC
    =
    BD=CE
    △ABD≌△ACE
    AD=AE
    16、(1);(2),证明见解析;(3) .
    【解析】
    (1)根据等边三角形的性质可得,,然后根据旋转的性质可得,°,从而得出,然后利用SAS即可证出,最后利用对顶角相等和三角形的内角和定理即可求出结论;
    (2)根据等边三角形的性质可得,,然后根据旋转的性质可得,°,从而得出,然后利用SAS即可证出,最后利用对顶角相等和三角形的内角和定理即可求出结论;
    (3)设EC和FO交于点G,根据等边三角形的性质可得,,然后根据旋转的性质可得,°,从而得出、∠DCG=45°、∠BEC=30°,然后利用SAS即可证出,从而可求∠FGC=90°,然后根据等腰直角三角形的性质、勾股定理和30°所对的直角边是斜边的一半即可得出结论.
    【详解】
    解:(1) ∵是等边三角形,
    ∴,.
    ∵线段绕点顺时针旋转60°得到线段,
    ∴,°.
    ∴,
    即.
    在和中
    ∴.
    ∴.
    又,,.
    ∴.
    (2).
    证明:如图②,是等边三角形,
    ∴,.
    ∵线段绕点顺时针旋转60°得到线段,
    ∴,°.
    ∴,
    即.
    在和中
    ∴.
    ∴.
    又,,.
    ∴.
    (3)设EC和FO交于点G
    ∵是等边三角形,
    ∴,.
    ∵线段绕点顺时针旋转60°得到线段,
    ∴,°.
    ∴,
    即.
    ∴∠DCG=∠ECF-∠DCF=45°

    ∴∠BEC=180°-∠ABC-∠BCE=30°
    在和中
    ∴.
    ∴=30°
    ∴∠FGC=180°-∠F-∠ECF=90°
    ∴△CGD为等腰直角三角形,CG= DG
    ∴CG 2+DG2=CD2
    即2CG2=62
    解得:CG= DG=
    在Rt△FGC中,FC=2CG =,FG=
    ∴DF=FG-DG=-
    此题考查的是等边三角形的性质、旋转的性质、全等三角形的判定及性质和直角三角形的性质,掌握等边三角形的性质、旋转的性质、全等三角形的判定及性质、勾股定理和30°所对的直角边是斜边的一半是解决此题的关键.
    17、(1)100;;(2)补图见解析;(3)240人.
    【解析】
    根据条件图可知(1)一共抽取学生名,图中等级为D级的扇形的圆心角等于;(2)求出等级人数为名,再画图;(3)由(2)估计该校等级为C级的学生约有.
    【详解】
    解:在这次调查中,一共抽取学生名,
    图中等级为D级的扇形的圆心角等于,
    故答案为100、;
    等级人数为名,
    补全图形如下:
    估计该校等级为C级的学生约有人.
    本题考核知识点:统计图,由样本估计总体. 解题关键点:从统计图获取信息.
    18、80 120
    【解析】
    (1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9-3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;
    (2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;
    (3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.
    【详解】
    (1)设慢车的速度为akm/h,快车的速度为bkm/h,
    根据题意,得 ,解得 ,
    故答案为80,120;
    (2)图中点C的实际意义是:快车到达乙地;
    ∵快车走完全程所需时间为720÷120=6(h),
    ∴点C的横坐标为6,
    纵坐标为(80+120)×(6﹣3.6)=480,
    即点C(6,480);
    (3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.
    即相遇前:(80+120)x=720﹣500,
    解得x=1.1,
    相遇后:∵点C(6,480),
    ∴慢车行驶20km两车之间的距离为500km,
    ∵慢车行驶20km需要的时间是=0.25(h),
    ∴x=6+0.25=6.25(h),
    故x=1.1 h或6.25 h,两车之间的距离为500km.
    考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    先根据垂直平分线的性质,判定AM=BM,再求出∠B=30°,∠CAM=90°,根据直角三角形中30度的角对的直角边是斜边的一半,得出BM=AM=CA,即CM=2BM,进而可求出BC的长.
    【详解】
    如图所示,连接AM,
    ∵∠BAC=120°,AB=AC,
    ∴∠B=∠C=30°,
    ∵MN⊥AB,
    ∴BM=2MN=2,
    ∵MN是AB的垂直平分线,
    ∴BM=AM=2,
    ∴∠BAM=∠B=30°,
    ∴∠MAC=90°,
    ∴CM=2AM=4,
    ∴BC=2+4=1.
    故答案为1.
    此题主要考查了等腰三角形的性质,含30°角的直角三角形的性质,以及线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.
    20、110°
    【解析】
    已知∠1=20°,可求得∠3=90°-20°=70°,再由矩形的对边平行,根据两直线平行,同旁内角互补可得∠2+∠3=180°,即可得∠2=110°.
    21、.
    【解析】
    首先,需要证明线段B1B2就是点B运动的路径(或轨迹),如图1所示.利用相似三角形可以证明;其次,证明△APN∽△AB1B2,列比例式可得B1B2的长.
    【详解】
    解:如图1所示,当点P运动至ON上的任一点时,设其对应的点B为Bi,连接AP,ABi,BBi,
    ∵AO⊥AB1,AP⊥ABi,
    ∴∠OAP=∠B1ABi,
    又∵AB1=AO•tan30°,ABi=AP•tan30°,
    ∴AB1:AO=ABi:AP,
    ∴△AB1Bi∽△AOP,
    ∴∠B1Bi=∠AOP.
    同理得△AB1B2∽△AON,
    ∴∠AB1B2=∠AOP,
    ∴∠AB1Bi=∠AB1B2,
    ∴点Bi在线段B1B2上,即线段B1B2就是点B运动的路径(或轨迹).
    由图形2可知:Rt△APB1中,∠APB1=30°,

    Rt△AB2N中,∠ANB2=30°,


    ∵∠PAB1=∠NAB2=90°,
    ∴∠PAN=∠B1AB2,
    ∴△APN∽△AB1B2,
    ∴,
    ∵ON:y=﹣x,
    ∴△OMN是等腰直角三角形,
    ∴OM=MN=,
    ∴PN=,
    ∴B1B2=,
    综上所述,点B运动的路径(或轨迹)是线段B1B2,其长度为.
    故答案为:.
    本题考查动点问题,用到了三角形的相似、和等腰三角形的性质,解题关键是找出图形中的相似三角形,利用对应边之比相等进行边长转换.
    22、﹣1
    【解析】
    已知等式左边利用题中的新定义化简,再利用拆项法变形,整理后即可求出解.
    【详解】
    解:已知等式利用题中的新定义化简得:
    +…+=,
    整理得:()=,
    合并得:()=,即=0,
    去分母得:x+2018+x=0,
    解得:x=﹣1,
    经检验x=﹣1是分式方程的解,
    则x=﹣1.
    故答案为:﹣1.
    本题考查了分式的混合运算,属于新定义题型,将所求的式子变形之后利用进行拆项是解题的关键.
    23、2
    【解析】
    由∠ACB=90°,CD是斜边上的中线,求出AB=1,根据AB+AC+BC=14,求出AC+BC,根据勾股定理得出AC2+BC2=AB2=31推出AC•BC=14,根据SAC•BC即可求出答案.
    【详解】
    如图,∵∠ACB=90°,CD是斜边上的中线,∴AB=2CD=1.
    ∵AB+AC+BC=14,∴AC+BC=8,由勾股定理得:AC2+BC2=AB2=31,∴(AC+BC)2﹣2AC•BC=31,∴AC•BC=14,∴SAC•BC=2.
    故答案为:2.
    本题考查了对直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,能根据性质求出AC•BC的值是解答此题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)四边形AEBD是矩形.
    【解析】
    (1)利用平行线得到∠ADO=∠BEO,再利用对顶角相等和线段中点,可证明△AOD≌△BOE;
    (2)先证明四边形AEBD是平行四边形,再利用对角线相等的平行四边形的矩形,可判定四边形AEBD是矩形.
    【详解】
    (1)∵四边形ABCD是平行四边形,∴AD∥CE,∴∠ADO=∠BEO.
    ∵O是BC中点,∴AO=BO.
    又∵∠AOD=∠BOE,∴△AOD≌△BOE(AAS);
    (2)四边形AEBD是矩形,理由如下:
    ∵△AOD≌△BOE,∴DO=EO.
    又AO=BO,∴四边形AEBD是平行四边形.
    ∵DC=DE=AB,∴四边形AEBD是矩形.
    本题考查了平行四边形的性质、全等三角形的判定和性质、矩形的判定和性质,解决这类问题往往是把四边形问题转化为三角形问题解决.
    25、(1)点;(2)①见解析;②点;(3)点,,,.
    【解析】
    (1)由旋转的性质可得,,,由勾股定理可求的长,即可求点坐标;
    (2)①连接交于点,由旋转的性质可得,,,,,,可得,可证点,点,点,点四点共圆,可得,,,由“”可证;
    ②通过证明点,点关于对称,可求点坐标;
    (3)分两种情况讨论,由面积法可求,由勾股定理可求的值,即可求点坐标.
    【详解】
    解:(1)四边形是矩形
    ,,
    将矩形绕点逆时针方向旋转得到矩形.
    ,,


    (2)①如图,连接交于点,
    四边形是矩形

    ,且

    将矩形绕点逆时针方向旋转得到矩形.
    ,,,,,,

    点,点,点,点四点共圆,
    ,,,




    ,且,





    点,点,点共线

    点,点关于对称,且

    (3)如图,当点在点右侧,连接,过点作于,

    设,则,,
    ,,
    四边形是矩形,





    (负值舍去),


    点,,
    如图,若点在点左侧,连接,过点作于,

    设,则,,
    ,,
    四边形是矩形,








    点,,
    综上所述:点,,,
    本题是四边形综合题,考查了矩形的性质,旋转的性质,全等三角形的判定和性质,勾股定理等知识,还考查了分类讨论思想的应用,考查了数形结合思想的应用,添加恰当辅助线是本题的关键.
    26、(1)DE=1;(2)①四边形AEMF是菱形,证明见解析;②
    【解析】
    (1)先利用折叠的性质得到EF⊥AB,△AEF≌△DEF,则S△AEF=S△DEF,则易得S△ABC=1S△AEF,再证明Rt△AEF∽Rt△ABC,然后根据相似三角形的性质得到两个三角形面积比和AB,AE的关系,再利用勾股定理求出AB即可得到AE的长;
    (2)①根据四边相等的四边形是菱形证明即可;
    ②设AE=x,则EM=x,CE=8−x,先证明△CME∽△CBA得到关于x的比例式,解出x后计算出CM的值,再利用勾股定理计算出AM,然后根据菱形的面积公式计算EF.
    【详解】
    (1)∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,
    ∴EF⊥AB,△AEF≌△DEF,
    ∴S△AEF=S△DEF,
    ∵S△ADE=S四边形BCDE,
    ∴S△ABC=4S△AEF,
    在Rt△ABC中,∵∠ACB=90,AB=10,BC=6,
    ∴AC=8,
    ∵∠EAF=∠BAC,
    ∴Rt△AEF∽Rt△ABC,
    ∴,即,
    ∴AE=1(负值舍去),
    由折叠知,DE=AE=1.
    (2)①如图2中,∵△ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,
    ∴AE=EM,AF=MF,∠AFE=∠MFE,
    ∵ME∥AB,
    ∴∠AFE=∠FEM
    ∴∠MFE=∠FEM,
    ∴ME=MF,
    ∴AE=EM=MF=AF,
    ∴四边形AEMF为菱形.
    ②设AE=x,则EM=x,CE=8−x,
    ∵四边形AEMF为菱形,
    ∴EM∥AB,
    ∴△CME∽△CBA,
    ∴,
    即,
    解得x=,CM=,
    在Rt△ACM中,AM=,
    ∵S菱形AEMF=EF•AM=AE•CM,
    ∴EF=2×.
    本题考查了相似形的综合题:熟练掌握折叠的性质和菱形的判定与性质;灵活构建相似三角形,运用勾股定理或相似比表示线段之间的关系和计算线段的长.解决此类题目时要各个击破.本题有一定难度,证明三角形相似和运用勾股定理得出方程是解决问题的关键,属于中考常考题型.
    题号





    总分
    得分
    批阅人
    中学生综合素质评价成绩
    中学生综合素质评价等级
    A级
    B级
    C级
    D级
    相关试卷

    广东省广州市白云区2024年九上数学开学达标检测试题【含答案】: 这是一份广东省广州市白云区2024年九上数学开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届广东省广州市荔湾区统考数学九上开学考试模拟试题【含答案】: 这是一份2025届广东省广州市荔湾区统考数学九上开学考试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届广东省广州市第七中学九上数学开学教学质量检测模拟试题【含答案】: 这是一份2025届广东省广州市第七中学九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map