开学活动
搜索
    上传资料 赚现金

    广东省广州市番禺区南村中学2025届数学九上开学学业水平测试模拟试题【含答案】

    广东省广州市番禺区南村中学2025届数学九上开学学业水平测试模拟试题【含答案】第1页
    广东省广州市番禺区南村中学2025届数学九上开学学业水平测试模拟试题【含答案】第2页
    广东省广州市番禺区南村中学2025届数学九上开学学业水平测试模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省广州市番禺区南村中学2025届数学九上开学学业水平测试模拟试题【含答案】

    展开

    这是一份广东省广州市番禺区南村中学2025届数学九上开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图是甲、乙两名运动员正式比赛前的5次训练成绩的折线统计图,你认为成绩较稳定的是( )
    A.甲B.乙
    C.甲、乙的成绩一样稳定D.无法确定
    2、(4分)如图,在四边形中,下列条件不能判定四边形是平行四边形的是( )
    A.B.
    C.D.
    3、(4分)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是( ).
    A.8%B.9%C.10%D.11%
    4、(4分)数学课上,小明同学在练习本的相互平行的横隔线上先画了直线a,度量出∠1=112°,接着他准备在点A处画直线b.若要b∥a,则∠2的度数为( )
    A.112°B.88°C.78°D.68°
    5、(4分)在函数中,自变量x的取值范围是( )
    A.B.C.D.
    6、(4分)如图,点O(0,0),A(0,1)是正方形的两个顶点,以对角线为边作正方形,再以正方形的对角线作正方形,…,依此规律,则点的坐标是( )
    A.(-8,0)B.(0,8)
    C.(0,8)D.(0,16)
    7、(4分)顺次连结菱形各边中点所得到四边形一定是( ​)
    A.平行四边形B.正方形​C.矩形​D.菱形
    8、(4分)式子有意义,则x的取值范围是( )
    A.x>1B.x<1C.x≥1D.x≤1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)设函数与y=x﹣1的图象的交点坐标为(a,b),则的值为 .
    10、(4分)某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是_____________.
    11、(4分)一组数据1,3,5,7,9的方差为________.
    12、(4分)如图,△ABC是边长为1的等边三角形,分别取AC,BC边的中点D,E,连接DE,作EF∥AC,得到四边形EDAF,它的周长记作C1;分别取EF,BE的中点D1,E1,连接D1E1,作E1F1∥EF,得到四边形E1D1FF1,它的周长记作C2…照此规律作下去,则C2018=_____.
    13、(4分)如图,是用形状、大小完全相同的等腰梯形镶嵌的图案,则这个图案中的等腰三角形的底角(指锐角)的度数是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,一次函数与反比例函数的图象交于点和,与y轴交于点C.
    (1)= ,= ;
    (2)根据函数图象可知,当>时,x的取值范围是 ;
    (3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当:=3:1时,求点P的坐标.
    15、(8分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,
    求证:四边形OCED是菱形.
    16、(8分)某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件,可获利润150元,每制造一个乙种零件可获利润260元,在这20名工人中,车间每天安排名工人制造甲种零件,其余工人制造乙种零件,且生产乙种零件的个数不超过甲种零件个数的一半.
    (1)请写出此车间每天所获利润(元)与(人)之间的函数关系式;
    (2)求自变量的取值范围;
    (3)怎样安排生产每天获得的利润最大,最大利润是多少?
    17、(10分)在“3.15”植树节活动后,对栽下的甲、乙、丙、丁四个品种的树苗进行成活率观测,以下是根据观测数据制成的统计图表的一部分:
    若经观测计算得出丙种树苗的成活率为89.6%,请你根据以上信息解答下列问题:
    (1)这次栽下的四个品种的树苗共 棵,乙品种树苗 棵;
    (2)图1中,甲 %、乙 %,并将图2补充完整;
    (3)求这次植树活动的树苗成活率.
    18、(10分)利用我们学过的知识,可以导出下面这个等式:

    该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.
    (1)请你展开右边检验这个等式的正确性;
    (2)利用上面的式子计算:

    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知直角梯形ABCD中,AD∥BC,∠A=90°,AB=,CD=5,那么∠D的度数是_____.
    20、(4分)如果a2-ka+81是完全平方式,则k=________.
    21、(4分)写出一个图象经过点(1,﹣2)的函数的表达式:_____.
    22、(4分)在菱形ABCD中,M是AD的中点,AB=4,N是对角线AC上一动点,△DMN 的周长最小是2+,则BD的长为___________.
    23、(4分)如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知 BC∥EF,BC=EF,AF=DC.试证明:AB=DE.
    25、(10分)如图,在平面直角坐标系中,直线的解析式为,点的坐标分别为(1,0),(0,2),直线与直线相交于点.
    (1)求直线的解析式;
    (2)点在第一象限的直线上,连接,且,求点的坐标.
    26、(12分)近年来,随着我国科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11个小时,大大方便了人们出行,已知高铁行驶速度是原来火车速度的3.2倍,求高铁的行驶速度.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    观察图象可知:甲的波动较小,成绩较稳定.
    【详解】
    解:从图得到,甲的波动较小,甲的成绩稳定.
    故选:A.
    本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    2、C
    【解析】
    根据平行四边形的5种判定方法分别进行分析即可.
    【详解】
    A. 根据两组对边分别平行,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;
    B. 根据两组对边分别相等,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;
    C.不能判定判定四边形ABCD是平行四边形,故此选项符合题意;
    D. 根据一组对边平行且相等,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;
    故选C.
    此题考查平行四边形的判定,解题关键在于掌握判定定理
    3、C
    【解析】
    分析:设平均每次下调的百分率为x,则两次降价后的价格为6000(1-x)2,根据降低率问题的数量关系建立方程求出其解即可.
    详解:设平均每次下调的百分率为x,由题意,得
    6000(1-x)2=4860,
    解得:x1=0.1,x2=1.9(舍去).
    答:平均每次下调的百分率为10%.
    故选C.
    点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据降低率问题的数量关系建立方程是关键.
    4、D
    【解析】
    根据平行线的性质,得出,根据平行线的性质,得出,即可得到,进而得到的度数.
    【详解】
    练习本的横隔线相互平行,



    又,

    即.
    故选:.
    本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补.
    5、B
    【解析】
    根据这一性质即可确定.
    【详解】
    解:
    故选:B
    本题考查了函数自变量的取值范围,由函数解析式确定自变量满足的条件是解题的关键.
    6、D
    【解析】
    根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,可求出从A到A3变化后的坐标,再求出A1、A2、A3、A4、A5,继而得出A8坐标即可.
    【详解】
    解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘,
    ∵从A到经过了3次变化,
    ∵45°×3=135°,1×=2,
    ∴点所在的正方形的边长为2,点位置在第四象限,
    ∴点的坐标是(2,-2),
    可得出:点坐标为(1,1),
    点坐标为(0,2),点坐标为(2,-2),
    点坐标为(0,-4),点坐标为(-4,-4),
    (-8,0),A7(-8,8),(0,16),
    故选D.
    本题考查了规律题,点的坐标,观察出每一次的变化特征是解答本题的关键.
    7、C
    【解析】
    根据三角形的中位线定理首先可以证明:顺次连接四边形各边中点所得四边形是平行四边形.再根据对角线互相垂直,即可证明平行四边形的一个角是直角,则有一个角是直角的平行四边形是矩形.
    【详解】
    如图,四边形ABCD是菱形,且E. F. G、H分别是AB、BC、CD、AD的中点,
    则EH∥FG∥BD,EF=FG=BD;EF∥HG∥AC,EF=HG=AC,AC⊥BD.
    故四边形EFGH是平行四边形,
    又∵AC⊥BD,
    ∴EH⊥EF,∠HEF=90°,
    ∴边形EFGH是矩形.
    故选:C.
    本题考查平行四边形的判定和三角形中位线定理,解题的关键是掌握平行四边形的判定和三角形中位线定理.
    8、C
    【解析】
    试题分析:由二次根式的概念可知被开方数为非负数,由此有x-1≥0,所以x≥1,C正确
    考点:二次根式有意义的条件
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-1
    【解析】
    把点的坐标代入两函数得出ab=1,b-a=-1,把化成,代入求出即可,
    【详解】
    解:∵函数与y=x﹣1的图象的交点坐标为(a,b),
    ∴ab=1,b-a=-1,
    ∴==,
    故答案为:−1.
    本题主要考查了反比例函数与一次函数的交点问题,掌握函数图像上点的意义是解题的关键.
    10、1.
    【解析】
    根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.
    【详解】
    解:将数据从小到大重新排列为:5、6、1、1、10、10,
    所以这组数据的中位数为=1.
    故答案为:1.
    本题考查中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.
    11、8
    【解析】
    根据方差公式S2= 计算即可得出答案.
    【详解】
    解:∵ 数据为1,3,5,7,9,
    ∴平均数为:=5,
    ∴方差为:[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2] =8.
    故答案为8.
    本题考查方差的计算,熟记方差公式是解题关键.
    12、
    【解析】
    根据三角形中位线定理可求出C1的值,进而可得出C2的值,找出规律即可得出C2018的值
    【详解】
    解:∵E是BC的中点,ED∥AB,
    ∴DE是△ABC的中位线,
    ∴DE=AB=,AD=AC=,
    ∵EF∥AC,
    ∴四边形EDAF是菱形,
    ∴C1=4×;
    同理求得:C2=4×;



    故答案为:.
    本题考查了三角形中位线定理、等边三角形的性质、菱形的性质;熟练掌握三角形中位线定理,并能进行推理计算是解决问题的关键.
    13、60°
    【解析】
    本题主要考查了等腰梯形的性质,平面镶嵌(密铺).关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
    【详解】
    解:由图可知,铺成的一个图形为平行四边形,而原图形为等腰梯形,则现铺成的图形的底角为:180°÷3=60°.
    故答案为60°.
    三、解答题(本大题共5个小题,共48分)
    14、(1),16; (2)-8<x<0或x>4; (3)点P的坐标为().
    【解析】
    (1)将点B代入y1=k1x+2和y2=,可求出k1=k2=16.
    (2)由图象知,-8<x<0和x>4
    (3)先求出四边形ODAC的面积,从而求出DE的长,然后得出点E的坐标,最后求出直线OP的解析式即可得出点P的坐标.
    【详解】
    解:(1)把B(-8,-2)代入y1=k1x+2得-8k1+2=-2,解得k1=
    ∴一次函数解析式为y1=x+2;
    把B(-8,-2)代入得k2=-8×(-2)=16,
    ∴反比例函数解析式为
    故答案为:,16;
    (2)∵当y1>y2时即直线在反比例函数图象的上方时对应的x的取值范围,
    ∴-8<x<0或x>4;
    故答案为:-8<x<0或x>4;
    (3)由(1)知y1=x+2,y2=,
    ∴m=4,点C的坐标是(0,2),点A的坐标是(4,4),
    ∴CO=2,AD=OD=4,
    ∴S梯形ODAC=·OD=×4=12.
    ∵S梯形ODAC∶S△ODE=3∶1,
    ∴S△ODE=×S梯形ODAC=×12=4,
    即OD·DE=4,∴DE=2,
    ∴点E的坐标为(4,2).
    又∵点E在直线OP上,
    ∴直线OP的解析式是y=x,
    ∴直线OP与反比例函数y2=的图象在第一象限内的交点P的坐标为(4,2).
    本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数与一次函数的解析式,三角形、梯形的面积,根据图象找出自变量的取值范围.在解题时要综合应用反比例函数的图象和性质以及求一次函数与反比例函数交点坐标是本题的关键.
    15、见解析
    【解析】
    首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论.
    【详解】
    证明:∵DE∥AC,CE∥BD,
    ∴四边形OCED是平行四边形.
    ∵四边形ABCD是矩形,∴OC=OD=AC=BD
    ∴四边形OCED是菱形.
    16、(1);(2)(3)安排13人生产甲种零件,安排7人生产乙种零件,所获利润最大,最大利润为20800元.
    【解析】
    (1)整个车间所获利润=甲种零件所获总利润+乙种零件所获总利润;
    (2)根据零件零件个数均为非负整数以及乙种零件的个数不超过甲种零件个数的一半可得自变量的取值范围;
    (3)根据(1)得到的函数关系式可得当x取最小整数值时所获利润最大.
    解答
    【详解】
    解:(1)此车间每天所获利润(元)与(人)之间的函数关系式是

    (2)由
    解得
    因为为整数,所以
    (3)随的增大而减小,
    当时,.
    即安排13人生产甲种零件,安排7人生产乙种零件,所获利润最大,最大利润为20800元.
    本题考查一次函数的性质、一元一次不等式组的应用和一次函数的应用,解题的关键是熟练掌握一次函数的性质、一元一次不等式组的应用和一次函数的应用.
    17、(1)500,100;(2)30,20,补图见解析;(3)这次植树活动的树苗成活率为89.8%.
    【解析】
    (1)根据丙种植树125棵,占总数的25%,即可求得总棵树,然后求得乙种的棵树;
    (2)利用百分比的意义即可求得甲和乙所占的百分比,以及成活率;
    (3)求得成活的总棵树,然后根据成活率的定义求解.
    【详解】
    (1)这次栽下的四个品种的树苗总棵树是:125÷25%=500(棵),则乙品种树苗的棵树是:500−150−125−125=100(棵),故答案为:500,100;
    (2)甲所占的百分比是:×100%=30%,乙所占的百分比是:×100%=20%,丙种成活的棵树:125×89.6%=112(棵).故答案为:30,20.
    (3)成活的总棵树是:135+85+112+117=449(棵),所以这次植树活动的树苗成活率为=89.8%.
    本题考查统计表、扇形统计图和条形统计图,解题的关键是读懂统计表、扇形统计图和条形统计图中的信息.
    18、(1)见解析;(2)1.
    【解析】
    (1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;
    (2)根据题目中的等式可以求得所求式子的值.
    【详解】
    解:(1)[(a-b)2+(b-c)2+(c-a)2]
    =(a2-2ab+b2+b2-2bc+c2+a2-2ac+c2)
    =×(2a2+2b2+2c2-2ab-2bc-2ac)
    =a2+b2+c2-ab-bc-ac,
    故a2+b2+c2-ab-bc-ac=[(a-b)2+(b-c)2+(c-a)2]正确;
    (2)20182+20192+20202-2018××2020-2018×2020
    =×[()2+(2019-2020)2+(2020-2018)2]
    =×(1+1+4)
    =×6
    =1.
    本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、60°或120°
    【解析】
    该题根据题意分为两种情况,首先正确画出图形,根据已知易得直角三角形DEC的直角边和斜边的长,然后利用三角函数,即可求解.
    【详解】
    ①如图1,
    过D作DE⊥BC于E,则∠DEC=∠DEB=90°,
    ∵AD∥BC,∠A=90°,
    ∴∠B=90°,
    ∴四边形ABED是矩形,
    ∴∠ADE=90°,AB=DE=,
    ∵CD=5,
    ∴sinC==,
    ∴∠C=60°,
    ∴∠EDC=30°,
    ∴∠ADC=90°+30°=120°;
    ②如图2,
    此时∠D=60°,
    即∠D的度数是60°或120°,
    故答案为:60°或120°.
    该题重点考查了三角函数的相关知识,解决该题的关键一是:能根据题意画出两种情况,二是:把该题转化为三角函数问题,从而即可求解.
    20、±18.
    【解析】
    利用完全平方公式的结构特征判断即可确定出k的值.
    【详解】
    ∵二次三项式a2-ka+81是完全平方式,
    ∴k=±18,
    故答案为:±18.
    此题考查完全平方式,解题关键在于掌握运算法则
    21、
    【解析】
    设y=kx,把点(1,﹣2)代入即可(答案不唯一).
    【详解】
    设y=kx,把点(1,﹣2)代入,得
    k=-2,
    ∴(答案不唯一).
    故答案为:.
    本题考查了待定系数法求一次函数解析式,利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式,如求一次函数的解析式时,先设y=kx+b(k≠0);②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.
    22、4
    【解析】
    根据题意,当B、N、M三点在同一条直线时,△DMN的周长最小为:BM+DM=2+,由DM=,则BM=,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD为等边三角形,即可得到BD的长度.
    【详解】
    解:如图:连接BD,BM,则AC垂直平分BD,则BN=DN,
    当B、N、M三点在同一条直线时,△DMN的周长最小为:BM+DM=2+,
    ∵AD=AB=4,M是AD的中点,
    ∴AM=DM=,
    ∴BM=,
    ∵,
    ∴△ABM是直角三角形,即∠AMB=90°;
    ∵BM是△ABD的中线,
    ∴△ABD是等边三角形,
    ∴BD=AB=AD=4.
    故答案为:4.
    本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD是等边三角形.
    23、45°.
    【解析】
    首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.
    【详解】
    解:过点B作BD∥l,
    ∵直线l∥m,
    ∴BD∥l∥m,
    ∴∠4=∠1,∠2=∠3,
    ∴∠1+∠2=∠3+∠4=∠ABC,
    ∵∠ABC=45°,
    ∴∠1+∠2=45°.
    故答案为:45°.
    此题考查了平行线的性质.解题时注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析
    【解析】
    首先根据平行线的性质可得∠BCA=∠EFD,再根据AF=DC可得AC=DF,然后可以证明△ABC≌△DEF,再根据全等三角形的性质可得AB=DE.
    【详解】
    ∵BC∥EF (已知),∴∠BCA=∠EFD( 两直线平行,内错角相等)
    ∵AF=DC(已知),∴AF+FC=DC+FC,即 AC=DF.
    在△ABC和△DEF中,∵,∴△ABC≌△DEF( SAS),∴AB=DE( 全等三角形的对应边相等).
    全等三角形的判定与性质,以及平行线的性质,关键是掌握证明三角形全等的判定方法:SSS、ASA、SAS、AAS.
    25、(1)y=−2x+2;(2)
    【解析】
    (1)利用待定系数法即可得到直线AB的表达式;
    (2)通过解方程组即可得到点P的坐标,设点Q(t,2t−6),作QH⊥x轴,垂足为H,PK⊥x轴,垂足为K.可得KA=2−1=1,PK=2,HA=t−1,QH=2t−6,根据勾股定理得到AP,AQ,根据AP=AQ得到关于t的方程,解方程求得t,从而得到点Q的坐标.
    【详解】
    解:(1)设AB的解析式为y=kx+b(k≠0),
    把(1,0)、(0,2)代入y=kx+b
    得:,解得:k=−2,b=2,
    ∴y=−2x+2;
    (2)联立得,解得:x=2,y=−2,
    ∴P(2,−2),
    设点Q(t,2t−6),作QH⊥x轴,垂足为H.PK⊥x轴,垂足为K.
    KA=2−1=1,PK=2,HA=t−1,QH=2t−6
    AP=,AQ=,
    ∵AP=AQ,
    ∴(t−1)2+(2t−6)2=5,
    解得:t1=2(舍去);t2=,,
    把x=代入y=2x−6,得y=,
    ∴.
    此题主要考查了一次函数图象相交问题,以及待定系数法求一次函数解析式,关键是掌握两函数图象相交,交点坐标就是两函数解析式组成的方程组的解.
    26、高铁的行驶速度为1千米/时.
    【解析】
    设原来火车的速度为x千米/时,则高铁的速度为3.2x千米/时,根据时间=路程÷速度结合高铁比原来的火车省11小时,即可得出关于x的分式方程,解之即可得出结论.
    【详解】
    设原来火车的速度为x千米/时,则高铁的速度为3.2x千米/时,
    根据题意得:,
    解得:x=80,
    经检验,x=80是原分式方程的解,
    ∴3.2x=3.2×80=1.
    答:高铁的行驶速度为1千米/时.
    本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    题号





    总分
    得分
    批阅人
    栽下的各品种树苗棵数统计表
    植树品种
    甲种
    乙种
    丙种
    丁种
    植树棵数
    150
    125
    125

    相关试卷

    广东省东莞市名校2025届九上数学开学学业水平测试模拟试题【含答案】:

    这是一份广东省东莞市名校2025届九上数学开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届广东省阳江市九上数学开学学业水平测试模拟试题【含答案】:

    这是一份2025届广东省阳江市九上数学开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届广东省乳源县九上数学开学学业水平测试模拟试题【含答案】:

    这是一份2025届广东省乳源县九上数学开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map