广东省广州市广州中学2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】
展开
这是一份广东省广州市广州中学2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一组数据:5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的( )
A.平均数但不是中位数B.平均数也是中位数
C.众数D.中位数但不是平均数
2、(4分)如图,中,平分,则等于( )
A.B.C.D.
3、(4分)己知直角三角形一个锐角60°,斜边长为2,那么此直角三角形的周长是( )
A.B.3C.+2D.+3
4、(4分)式子在实数范围内有意义,则x的取值范围( )
A.x≤2B.x<2C.x>2D.x≥2
5、(4分)在平面直角坐标系中,作点A(3,4)关于x轴对称的点A′,再将点A′向左平移6个单位,得到点B,则点B的坐标为( )
A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)
6、(4分)八年级(1)班“环保小组的5位同学在一次活动中捡废弃塑料袋的个数分别为:16,16,4,6,1.这组数据的中位数、众数分别为( )
A.1,16B.4,16C.6,16D.10,16
7、(4分)用配方法解方程时,配方结果正确的是( )
A.B.
C.D.
8、(4分)在函数中的取值范围是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小明最多能买________枝钢笔.
10、(4分)如图,在正方形中,点、在对角线上,分别过点、作边的平行线交于点、,作边的平行线交于点、. 若,则图中阴影部分图形的面积和为_____.
11、(4分)将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.
12、(4分)如果乘坐出租车所付款金额(元)与乘坐距离(千米)之间的函数图像由线段、线段和射线组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为__________元.
13、(4分)如图,在平行四边形ABCD中,,,,则平行四边形ABCD的面积为___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线y= x+b,分别交x轴,y轴于点A、C,点P是直线AC与双曲线y=在第一象限内的交点,过点P作PB⊥x轴于点B,若OB=2,PB=3.
(1)填空:k= ;
(2)求△ABC的面积;
(3)求在第一象限内,当x取何值时,一次函数的值小于反比例函数的值?
15、(8分)已知,,,求的值.
16、(8分)已知:如图,在△ABC中,AB=AC=4cm,将△ABC沿CA方向平移4cm得到△EFA,连接BE,BF;BE与AF交于点G
(1)判断BE与AF的位置关系,并说明理由;
(2)若∠BEC=15°,求四边形BCEF的面积.
17、(10分)当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.
(1)若点E为完美点,且横坐标为2,则点E的纵坐标为 ;若点F为完美点,且横坐标为3,则点F的纵坐标为 ;
(2)完美点P在直线 (填直线解析式)上;
(3)如图,已知点A(0,5)与点M都在直线y=﹣x+5上,点B,C是“完美点”,且点B在直线AM上.若MC=,AM=4,求△MBC的面积.
18、(10分)如图,一次函数的图象与轴、轴分别交于、两点,与反比例函数交于点,过点分别作轴、轴的垂线,垂足分别为点、.若,,.
(1)求点的坐标;
(2)求一次函数和反比例函数的表达式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知一次函数与一次函数的图像相交于点P(-2,1),则关于不等式x+b≥mx-n的解集为_____.
20、(4分)已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
21、(4分)若代数式在实数范围内有意义,则的取值范围为____.
22、(4分)已知:,,代数式的值为_________.
23、(4分)如图,已知,则等于____________度.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.
25、(10分)解方程:.
26、(12分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;(不需要写定义域)
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平均数,中位数,众数的概念求解即可.
【详解】
45出现了三次是众数,
按从小到大的顺序排列得到第五,六个数分别为35,45,所以中位数为40;
由平均数的公式解得平均数为40;
所以40不但是平均数也是中位数.
故选:B.
考查平均数,中位数,众数的求解,掌握它们的概念是解题的关键.
2、B
【解析】
根据平行四边形的性质和角平分线的性质求解.
【详解】
解:在▱ABCD中,
∵DC∥AB,
∴∠AED=∠BAE.
∵AE平分∠DAB,
∴∠DAE=∠BAE,
∴∠DAE=∠DEA,
∵∠DEA=40°,
∴∠D=180°-40°-40°=100°,
故选:B.
本题利用了两直线平行,同旁内角互补,内错角相等和角的平分线的性质.
3、D
【解析】
根据直角三角形的性质及勾股定理即可解答.
【详解】
如图所示,
Rt△ABC中,AB=2,
故
故此三角形的周长是+3.
故选:D.
考查勾股定理,含30度角的直角三角形,熟练掌握含30度角的直角三角形的性质是解题的关键.
4、C
【解析】
分析:
根据使“分式和二次根式有意义的条件”进行分析解答即可.
详解:
∵式子在实数范围内有意义,
∴ ,解得:.
故选C.
点睛:熟记:“使分式有意义的条件是:分母的值不能为0;使二次根式有意义的条件是:被开方数为非负数”是解答本题的关键.
5、D
【解析】
根据直角坐标系坐标特点及平移性质即可求解.
【详解】
点A(3,4)关于x轴对称的点A′坐标为(3,-4)
再将点A′向左平移6个单位得到点B为(-3,-4)
故选D.
此题主要考查直角坐标系的坐标变换,解题的关键是熟知直角坐标系的特点.
6、A
【解析】
根据中位数和众数的定义求解
【详解】
解:这组数据的中位数为:1 ,
众数为:16 .
故选:A
此题考查中位数和众数的定义,解题关键在于掌握其定义
7、A
【解析】
利用配方法把方程变形即可.
【详解】
用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,
故选A.
本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.
8、C
【解析】
根据分母不等于0列式计算即可得解.
【详解】
根据题意得,,
解得.
故选C.
本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
解:设小明一共买了x本笔记本,y支钢笔,
根据题意,可得,可求得y≤
因为y为正整数,所以最多可以买钢笔1支.
故答案为:1.
10、2
【解析】
首先根据已知条件,可得出矩形BEPF和矩形BHQG是正方形,阴影部分面积即为△ABD的面积,即可得解.
【详解】
解:由已知条件,得∠DBC=∠ABD=∠BPE=∠BQH=45°,
∴矩形BEPF和矩形BHQG是正方形,
又∵BP、BQ分别为正方形BEPF和正方形BHQG的对角线
∴,
∴阴影部分的面积即为△ABD的面积,
∴
故答案为2.
此题主要考查正方形的判定,然后利用其性质进行等量转换,即可解题.
11、y=2x+1
【解析】
分析:直接根据函数图象平移的法则进行解答即可.
详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;
故答案为y=2x+1.
点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
12、1
【解析】
根据图象可知,8(千米)处于图中BC段,用待定系数法求出线段BC的解析式,然后令求出相应的y的值即可.
【详解】
根据图象可知 位于线段BC上,
设线段BC的解析式为
将代入解析式中得
解得
∴线段BC解析式为 ,
当时,,
∴乘坐该出租车8(千米)需要支付的金额为1元.
故答案为:1.
本题主要考查一次函数的实际应用,掌握待定系数法是解题的关键.
13、
【解析】
在Rt△ACB中,,,由勾股定理可得,AC=8,再根据平行四边形的面积公式即可求解.
【详解】
∵,
∴∠ACB=90°,
在Rt△ACB中,,,
由勾股定理可得,AC=8,
∴平行四边形ABCD的面积为:BC×AC=6×8=48.
故答案为:48.
本题考查了勾股定理及平行四边形的性质,利用勾股定理求得AC=8是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)6;(1)6;(3)0<x<1
【解析】
(1)∵PB⊥x轴于点B,OB=1,PB=3,
∴P(1,3),
∵点P是直线AC与双曲线y=在第一象限内的交点,
∴k=1×3=6,
故答案为6;
(1)∵直线y=x+b经过点P(1,3),
∴×1+b=3,
∴b=1,
即y=x+1,
令x=0,解得y=1,即C(0,1);
令y=0,解得x=﹣4,即A(﹣4,0);
∴AB=6,CO=1,
∴S△ABC=×6×1=6;
(3)由图象及点P的横坐标为1,可知:
在第一象限内,一次函数的值小于反比例函数的值时,x的范围为0<x<1.
15、78.
【解析】
原式提取公因式,再利用完全平方公式化简,将已知等式代入计算即可求出值.
【详解】
把,代入得:
此题考查了因式分解-提公因式法,熟练掌握因式分解的方法是解本题的关键.
16、(1)BE⊥AF,理由详见解析;(2)1.
【解析】
(1)由△ABC沿CA方向平移4cm得到△EFA,即可得BF=CA=AE,AB=EF,又由AB=AC,证得AB=BF=EF=AE,根据有四条边都相等的四边形是菱形,即可证得四边形ABFE是菱形,再根据菱形的对角线互相垂直可得BE⊥AF;
(2)首先作BM⊥AC于点M,由AB=AE,∠BEC=15°,求得∠BAC=30°,那么BM=AB=2cm,然后利用梯形的面积公式即可求得四边形BCEF的面积.
【详解】
解:(1)BE⊥AF.理由如下:
∵将△ABC沿CA方向平移4cm得到△EFA,
∴BF=CA=AE=4cm,AB=EF.
∵AB=AC,
∴AB=BF=EF=AE,
∴四边形ABFE是菱形,
∴BE⊥AF;
(2)作BM⊥AC于点M.
∵AB=AE,∠BEC=15°,
∴∠ABE=∠AEB=15°,
∴∠BAC=30°.
∴BM=AB=2cm.
∵BF=CA=AE=4cm,
∴四边形BCEF的面积=(BF+CE)•BM
=×1×2
=1.
此题考查了菱形的判定与性质,平移的性质,等腰三角形的性质,梯形面积的求法等知识.此题难度不大,掌握平移的性质是解题的关键.
17、(1)1,2;(2)y=x﹣1;(3)△MBC的面积=.
【解析】
(1)把m=2和3分别代入m+n=mn,求出n即可;
(2)求出两条直线的解析式,再把P点的坐标代入即可;
(3)由m+n=mn变式为=m﹣1,可知P(m,m﹣1),所以在直线y=x﹣1上,点A(0,5)在直线y=﹣x+b上,求得直线AM:y=﹣x+5,进而求得B(3,2),根据直线平行的性质从而证得直线AM与直线y=x﹣1垂直,然后根据勾股定理求得BC的长,从而求得三角形的面积.
【详解】
(1)把m=2代入m+n=mn得:2+n=2n,
解得:n=2,
即==1,
所以E的纵坐标为1;
把m=3代入m+n=mn得:3+n=3n,
解得:n=,
即,
所以F的纵坐标为2;
故答案为:1,2;
(2)设直线AB的解析式为y=kx+b,
从图象可知:与x轴的交点坐标为(5,0)A(0,5),
代入得:,
解得:k=﹣1,b=5,
即直线AB的解析式是y=﹣x+5,
设直线BC的解析式为y=ax+c,
从图象可知:与y轴的交点坐标为(0,﹣1),与x轴的交点坐标为(1,0),
代入得:,
解得:a=1,c=﹣1,
即直线BC的解析式是y=x﹣1,
∵P(m,),m+n=mn且m,n是正实数,
∴除以n得:,即
∴P(m,m﹣1)即“完美点”P在直线y=x﹣1上;
故答案为:y=x﹣1;
(3)∵直线AB的解析式为:y=﹣x+5,直线BC的解析式为y=x﹣1,
∴,
解得:,
∴B(3,2),
∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,
∴直线AM与直线y=x﹣1垂直,
∵点B是直线y=x﹣1与直线AM的交点,
∴垂足是点B,
∵点C是“完美点”,
∴点C在直线y=x﹣1上,
∴△MBC是直角三角形,
∵B(3,2),A(0,5),
∴
∵,
∴
又∵,
∴BC=1,
∴S△MBC=.
本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.
18、(1);(2).
【解析】
(1)利用,可以就可以求出A点的坐标
(2)利用A,B的坐标求出一次函数的解析式,然后利用C点坐标求出反比例函数的表达式。
【详解】
解:(1),
而,
,
点坐标为;
(2)点坐标为,
把、代入得,即得,
一次函数解析式为;
把代入得,
点坐标为,
,
反比例函数解析式为
此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,数形结合思想是数学中重要的思想方法,做题时注意灵活运用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
观察函数图象得到,当时,一次函数y1=x+b的图象都在一次函数y2=mx-n的图象的上方,由此得到不等式x+b>mx-n的解集.
【详解】
解:不等式x+b≥mx-n的解集为.
故答案为.
本题考查一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
20、
【解析】
先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
【详解】
由根与系数的关系得:m+n=,mn=,
∴m2+n2=(m+n)2-2mn=()2-2×=,
故答案为:.
本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
21、且
【解析】
根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.
【详解】
解:根据二次根式有意义,分式有意义得:且≠0,
即且.
本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.
22、4
【解析】
根据完全平方公式计算即可求出答案.
【详解】
解:∵,,
∴x−y=2,
∴原式=(x−y)2=4,
故答案为:4
本题考查二次根式的化简求值和完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.
23、1
【解析】
直接利用平行线的性质结合三角形外角的性质分析得出答案.
【详解】
∵AB∥CD,∠1=115°,
∴∠FGD=∠1=115°,
∴∠C+∠2=∠FGD=115°,
∵∠2=65°,
∴∠C=115°-65°=1°.
故答案为:1.
此题主要考查了平行线的性质、三角形的外角,正确得出∠FGD=∠1=115°是解题关键.
二、解答题(本大题共3个小题,共30分)
24、四边形是菱形,证明见解析
【解析】
根据直角三角形的性质可证得DE=BE,再利用平行四边形的性质证明四边形BFDE是平行四边形,从而可得到结论.
【详解】
证明:∵,
∴是直角三角形,且是斜边(或),
∵是的中点,
∴,
∵在平行四边形ABCD中,E、F分别为边AB、CD的中点,
∴且,
∴四边形是平行四边形,
∴四边形是菱形.
本题考查了平行四边形的判定与性质、直角三角形的性质及菱形的判定,熟记各性质与判定定理是解题的关键.
25、
【解析】
先移项,再两边平方,即可得出一个一元二次方程,求出方程的解,最后进行检验即可.
【详解】
解:移项得:,
两边平方得:,
整理得:,
解得:,,
经检验不是原方程的解,舍去,
∴是原方程的解.
本题考查了解无理方程的应用,解此题的关键是能把无理方程转化成有理方程,注意:解无理方程一定要进行检验.
26、(1)该一次函数解析式为y=﹣x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
【解析】
【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.
【详解】(1)设该一次函数解析式为y=kx+b,
将(150,45)、(0,1)代入y=kx+b中,得
,解得:,
∴该一次函数解析式为y=﹣x+1;
(2)当y=﹣x+1=8时,
解得x=520,
即行驶520千米时,油箱中的剩余油量为8升.
530﹣520=10千米,
油箱中的剩余油量为8升时,距离加油站10千米,
∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份广东省广州市第65中学2024年数学九年级第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省广州市天河数学九年级第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省广州市广州大附属中学九上数学开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。