广东省广州市华南师范大第二附属中学2024-2025学年九年级数学第一学期开学联考试题【含答案】
展开
这是一份广东省广州市华南师范大第二附属中学2024-2025学年九年级数学第一学期开学联考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一组数据1,l,,7,3,5,3,1的众数是1,则这组数据的中位数是( ).
A.1B.1.5C.3D.5
2、(4分)下列各数:其中无理数的个数是( )
A.4B.3C.2D.1
3、(4分)刘翔在出征北京奥运会前刻苦进行110米跨栏训练,教练对他20次的训练成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道刘翔这20次成绩的( )
A.众数B.平均数C.频数D.方差
4、(4分)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
A.12B.24C.12D.16
5、(4分)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,如图是购买甲、乙两家商场该商品的实际金额、(元)与原价(元)的函数图象,下列说法正确的是( )
A.当时,选甲更省钱B.当时,甲、乙实际金额一样
C.当时,选乙更省钱D.当时,选甲更省钱
6、(4分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为( )
A.16B.19C.22D.25
7、(4分)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD交AD于点E,AB=6,BC=10,则EF长为( )
A.1B.2C.3D.4
8、(4分)甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在□ABCD中,O是对角线的交点,那么____.
10、(4分)分解因式:=______.
11、(4分)如图,直线y=-x+m与y=nx+4n的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的解集为___________.
12、(4分)有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种____棵树.
13、(4分)若在实数范围内有意义,则的取值范围是____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)将含有45°角的直角三角板ABC和直尺如图摆放在桌子上,然后分别过A、B两个顶点向直尺作两条垂线段AD,BE.
(1)请写出图中的一对全等三角形并证明;
(2)你能发现并证明线段AD,BE,DE之间的关系吗?
15、(8分)已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)相交于A和B两点,且A点坐标为(1,1),B点的横坐标为﹣1.
(1)求反比例函数和一次函数的解析式;
(2)根据图象直接写出使得y1>y2时,x的取值范围.
16、(8分)在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.
(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;
(2)求原来的路线AC的长.
17、(10分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),线段OA上的动点M(与O,A不重合)从A点以每秒1个单位的速度沿x轴向左移动。
(1)求A、B两点的坐标;
(2)求△COM的面积S与M的移动时间t之间的函数关系式,并写出t的取值范围;
(3)当t何值时△COM≌△AOB,并求此时M点的坐标。
18、(10分)已知一次函数图像过点P(0,6),且平行于直线y=-2x
(1)求该一次函数的解析式
(2)若点A(,a)、B(2,b)在该函数图像上,试判断a、b的大小关系,并说明理由。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,已知△ABC与△DEF位似,原点O是位似中心,位似比,若AB=1.5,则DE=_____.
20、(4分)一组数据1,3,5,7,9的方差为________.
21、(4分)已知一次函数的图象如图,根据图中息请写出不等式的解集为__________.
22、(4分)计算:____ .
23、(4分)若直线经过点和点,则的值是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知四边形ABCD是矩形,对角线AC和BD相交于点F,,.
(1)求证:四边形DEAF是菱形;
(2)若,求的度数.
25、(10分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB
(1)求证:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
26、(12分)一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).
(1)由图可知,不等式kx+b>0的解集是 ;
(2)若不等式kx+b>﹣4x+a的解集是x>1.
①求点B的坐标;
②求a的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
数据1,1,x,7,3,2,3,1的众数是1,说明1出现的次数最多,所以当x=1时,1出现3次,次数最多,是众数;再把这组数据从小到大排列:1,1,1,1,3,3,2,7,处于中间位置的数是1和3,所以中位数是:(1+3)÷1=1.2.
故选B.
2、D
【解析】
依据无理数的三种常见类型进行判断即可.
【详解】
解:在中,是无理数,有1个,
故选:D.
此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
3、D
【解析】
根据只有方差是反映数据的波动大小的量,由此即可解答.
【详解】
众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数,只有方差是反映数据的波动大小的.所以为了判断成绩是否稳定,需要知道的是方差.
故选D.
本题考查统计学的相关知识.注意:众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数;方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
4、D
【解析】
如图,连接BE,
∵在矩形ABCD中,AD∥BC,∠EFB=60°,
∴∠AEF=110°-∠EFB=110°-60°=120°,∠DEF=∠EFB=60°.
∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,
∴∠BEF=∠DEF=60°.
∴∠AEB=∠AEF-∠BEF=120°-60°=60°.
在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=2.
∵AE=2,DE=6,∴AD=AE+DE=2+6=1.
∴矩形ABCD的面积=AB•AD=2×1=16.故选D.
考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.
5、D
【解析】
根据函数图象和图象中的数据可知原价 时,函数在上方,花费较贵,故乙商场较划算;当x=600时==480,甲乙商场花费一样;当 时函数在上方,花费较贵,故甲商场较划算
【详解】
据函数图象和图象中的数据可知原价 时,函数在上方,花费较贵,故乙商场较划算;当x=600时==480,甲乙商场花费一样;当 时函数在上方,花费较贵,故甲商场较划算
A. 当时,选乙更省钱,故A选项错误;
B. 当时,选乙更省钱,故B选项错误;
C. 当时,甲、乙实际金额一样,故C选项错误;
D. 当时,选甲更省钱,故D选项正确;
故答案为:D
本题考查了一次函数与方案选择问题,能够正确看懂函数图像,进行选择方案是解题的关键.
6、C
【解析】
首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.
【详解】
解:∵四边形ABCD为矩形,
∴B′C=BC=AD,∠B′=∠B=∠D=90°
∵∠B′EC=∠DEA,
在△AED和△CEB′中,
,
∴△AED≌△CEB′(AAS);
∴EA=EC,
∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,
=AD+DE+EC+EA+EB′+B′C,
=AD+DC+AB′+B′C,
=3+8+8+3,
=22,
故选:C.
本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.
7、B
【解析】
根据平行四边形的性质可得∠AFB=∠FBC,由角平分线可得∠ABF=∠FBC,所以∠AFB=∠ABF,所以AF=AB=1,同理可得DF=CD=1,则根据EF=AF+DF-AD即可求解.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=10,DC=AB=1.
∴∠AFB=∠FBC.
∵BF平分∠ABC,
∴∠ABF=∠FBC.
∴∠AFB=∠ABF.
∴AF=AB=1.
同理可得DF=DC=1.
∴EF=AF+DF﹣AD=1+1﹣10=2.
故选:B.
本题主要考查了平行四边形的性质、角平分线的定义,解题的关键是依据数学模型“角平分线+平行线=等腰三角形”转化线段.
8、A
【解析】
甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,
所以,.
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由向量的平行四边形法则及相等向量的概念可得答案.
【详解】
解:因为:□ABCD,
所以,,
所以:.
故答案为:.
本题考查向量的平行四边形法则,掌握向量的平行四边形法则是解题的关键.
10、x(x+2)(x﹣2).
【解析】
试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
考点:提公因式法与公式法的综合运用;因式分解.
11、
【解析】
令时,解得,则与x轴的交点为(﹣4,0),再根据图象分析即可判断.
【详解】
令时,解得,故与x轴的交点为(﹣4,0).
由函数图象可得,当时,函数的图象在x轴上方,且其函数图象在函数图象的下方,故解集是.
故答案为: .
本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.
12、21
【解析】
先利用勾股定理求出斜边为130米,根据数的间距可求出树的棵数.
【详解】
∵斜坡的水平距离为120米,高50米,
∴斜坡长为米,
又∵树的间距为6.5,
∴可种130÷6.5+1=21棵.
此题主要考察勾股定理的的应用.
13、且.
【解析】
分析:根据分式有意义和二次根式有意义的条件解题.
详解:因为在实数范围内有意义,所以x≥0且x-1≠0,则x≥0且x≠1.
故答案为x≥0且x≠1.
点睛:本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数是非负数,代数式既有分式又有二次根式时,分式与二次根式都要有意义.
三、解答题(本大题共5个小题,共48分)
14、(1)△ADC≌△CEB(2)AD=BE+DE
【解析】
(1)结论:△ADC≌△CEB.根据AAS证明即可;
(2)由三角形全等的性质即可解决问题;
【详解】
解:(1)结论:△ADC≌△CEB.
理由:∵AD⊥CE,BE⊥CE,
∴∠ACB=∠ADC=∠CEB=90°,
∴∠ACD+∠CAD=90°,∠ACD+∠ECB=90°,
∴∠CAD=∠ECB,
∵AC=CB,
∴△ADC≌△CEB(AAS).
(2)结论:AD=BE+DE.
理由:∵△ADC≌△CEB,
∴AD=CE,CD=BE,
∵CE=CD+DE,
∴AD=BE+DE.
本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型.
15、(1)y1=x+2,y2= ;(2)由图象可知y1>y2时,x>1或﹣1<x<2.
【解析】
(1)根据待定系数法即可解决问题.
(2)观察图象y1>y2时,y1的图象在y2的上面,由此即可写出x的取值范围.
【详解】
解:(1)把点A(1,1)代入y2=,得到m=1,
∴y2=.
∵B点的横坐标为﹣1,
∴点B坐标(﹣1,﹣1),
把A(1,1),B(﹣1,﹣1)代入y1=kx+b得到
解得,
∴y1=x+2,y2=.
(2)由图象可知y1>y2时,x>1或﹣1<x<2.
本题考查反比例函数与一次函数的图象的交点,学会待定系数法是解决问题的关键,学会观察图象由函数值的大小确定自变量的取值范围,属于中考常考题型.
16、(1)CH是从村庄C到河边的最近路,理由见解析;(2)原来的路线AC的长为2.5千米.
【解析】
(1)根据勾股定理的逆定理解答即可;
(2)根据勾股定理解答即可
【详解】
(1)是,
理由是:在△CHB中,
∵CH2+BH2=(2.4)2+(1.8)2=9
BC2=9
∴CH2+BH2=BC2
∴CH⊥AB,
所以CH是从村庄C到河边的最近路
(2)设AC=x
在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4
由勾股定理得:AC2=AH2+CH2
∴x2=(x﹣1.8)2+(2.4)2
解这个方程,得x=2.5,
答:原来的路线AC的长为2.5千米.
此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键.
17、(1)A(4,0)、B(0,2)
(2)当0
相关试卷
这是一份广东省广州市华南师范大附属中学2024年九上数学开学监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省华南师范大附属中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省广州市华南师范大附属中学九年级数学第一学期开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。