![广东省广州市重点中学2024-2025学年九上数学开学监测模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16264236/0-1729213411913/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省广州市重点中学2024-2025学年九上数学开学监测模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16264236/0-1729213411986/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省广州市重点中学2024-2025学年九上数学开学监测模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16264236/0-1729213412024/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广东省广州市重点中学2024-2025学年九上数学开学监测模拟试题【含答案】
展开
这是一份广东省广州市重点中学2024-2025学年九上数学开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各等式正确的是( )
A.B.
C.D.
2、(4分)如图,在框中解分式方程的4个步骤中,根据等式基本性质的是( )
A.①③B.①②C.②④D.③④
3、(4分)已知一个多边形的内角和是,则这个多边形是( )
A.四边形B.五边形C.六边形D.七边形
4、(4分)方程x2+x﹣12=0的两个根为( )
A.x1=﹣2,x2=6B.x1=﹣6,x2=2C.x1=﹣3,x2=4D.x1=﹣4,x2=3
5、(4分)若二次根式有意义,则x应满足( )
A.x≥3B.x≥﹣3C.x>3D.x>﹣3
6、(4分)数学课上,小明同学在练习本的相互平行的横隔线上先画了直线a,度量出∠1=112°,接着他准备在点A处画直线b.若要b∥a,则∠2的度数为( )
A.112°B.88°C.78°D.68°
7、(4分)点M(﹣3,y1),N(﹣2,y2)是抛物线 y=﹣(x+1)2+3上的两点,则下列大小关系正确的是( )
A.y1<y2<3B.3<y1<y2C.y2<y1<3D.3<y2<y1
8、(4分)如图.在正方形中,为边的中点,为上的一个动点,则的最小值是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若正比例函数的图象过点和点,当时,,则的取值范围为__________.
10、(4分)如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F分别为AO、AD的中点,则EF的长是_____.
11、(4分)如图,矩形ABCD的两条对角线相交于点O,若,,则AC的长为______.
12、(4分)今年全国高考报考人数是10310000,将10310000科学记数法表示为_____.
13、(4分)对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=,那么6※3=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,在中,延长到,使得.连结,.
(1)求证:;
(2)请在所给的图中,用直尺和圆规作点(不同于图中已给的任何点),使以,,,为顶点的四边形是平行四边形(只作一个,保留痕迹,不写作法).
15、(8分)某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.
(1)求这两种品牌计算器的单价;
(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买个x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;
(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.
16、(8分)校团委决定对甲、乙、丙三位候选人进行民主投票、笔试、面试考核,从中推选一名担任学生会主席.已知参加民主投票的学生为200名,每人当且仅当推荐一名候选人,民主投票结果如下扇形统计图所示,笔试和面试的成绩如下统计表所示.
(1)甲、乙、丙的得票数依次是______、______、______;
(2)若民主投票得一票记1分,学校将民主投票、笔试、面试三项得分按3:4:3的比例确定三名候选人的考核成绩,成绩最高当选,请通过计算确定谁当选.
17、(10分)如图,在平面直角坐标系中,直线分别交两轴于点,点的横坐标为4,点在线段上,且.
(1)求点的坐标;
(2)求直线的解析式;
(3)在平面内是否存在这样的点,使以为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,不必说明理由.
18、(10分)先化简,再求值:(1﹣)÷,其中x=+1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在R△ABC中,∠C=90°,AC=3,BC=4,点P是AB上的一个动点,过点P作PM⊥AC于点M,PN⊥BC于点N,连接MN,则MN的最小值为_____.
20、(4分)已知一个钝角的度数为 ,则x的取值范围是______
21、(4分)超速行驶是交通事故频发的主要原因之一.交警部门统计某天 7:00—9:00 经过高速公路某测速点的汽车的速度,得到频数分布折线图.若该路段汽车限速为110km/h,则超速行驶的汽车有_________辆.
22、(4分)已知边长为4cm的正方形ABCD中,点P,Q同时从点A出发,以相同的速度分别沿A→B→C和A→D→C的路线运动,则当PQcm时,点C到PQ的距离为______.
23、(4分)不等式 的解集为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)求证:顺次连接对角线相等的四边形的各边中点,所得的四边形是菱形.
(1)根据所给的图形,将已知、求证补充完整:
已知:如图,在四边形中,,_______________________.
求证:____________________.
(2)证明这个命题.
25、(10分)解分式方程:
(1)
(2)
26、(12分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.
求证:AE∥CF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
解:选项A. ,错误;
选项B. ,正确;
选项C. ,错误;
选项D. ,错误.
故选B.
本题考查;;;;;;灵活应用上述公式的逆用是解题关键.
2、A
【解析】
根据等式的性质1,等式的两边都加或减同一个整式,结果不变,根据等式的性质1,等式的两边都乘或除以同一个不为零的整式,结果不变,可得答案.
【详解】
①根据等式的性质1,等式的两边都乘同一个不为零的整式x﹣1,结果不变;
②根据去括号法则;
③根据等式的性质1,等式的两边都加同一个整式3﹣x,结果不变;
④根据合并同类项法则.
根据等式基本性质的是①③.
故选A.
本题考查了等式的性质,利用了等式的性质1,等式的性质1.
3、B
【解析】
根据多边形内角和定理,n边形的内角和公式为,因此,
由得n=1.故选B.
4、D
【解析】
利用因式分解法解方程即可得出结论.
【详解】
解:x2+x-12=0
(x+4)(x-1)=0,
则x+4=0,或x-1=0,
解得:x1=-4,x2=1.
故选:D.
本题考查因式分解法解一元二次方程,熟练掌握因式分解的方法是解题的关键.
5、B
【解析】
根据二次根式有意义的条件得到:x+2≥1.
【详解】
解:由题意知,x+2≥1.
解得x≥﹣2.
故选:B.
本题考查了二次根式有意义的条件.概念:式子(a≥1)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
6、D
【解析】
根据平行线的性质,得出,根据平行线的性质,得出,即可得到,进而得到的度数.
【详解】
练习本的横隔线相互平行,
,
,
,
又,
,
即.
故选:.
本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补.
7、A
【解析】
根据抛物线的性质,抛物线上的点离对称轴越远,对应的函数值就越小,点(-1,3)在对称轴上,即可得到答案.
【详解】
抛物线的解析式y=﹣(x+1)2+3可得其对称轴为x=-1,系数a<0,图像开口下下,
根据抛物线上的点离对称轴越远,对应的函数值就越小,点(-1,3)在对称轴上,-3
相关试卷
这是一份广东省广州市黄埔区2024-2025学年九上数学开学考试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省广州市东圃中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年云南省重点中学九上数学开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。