


广东省广州四中学2025届九年级数学第一学期开学联考模拟试题【含答案】
展开
这是一份广东省广州四中学2025届九年级数学第一学期开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)的绝对值是( )
A.B.C.D.
2、(4分)若关于x的一元二次方程有实数根,则整数a的最大值是( )
A.4B.5C.6D.7
3、(4分)点P在第四象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )
A.(-4,3) B.(-3,4) C.(4,-3) D.(3,-4)
4、(4分)如图,在正方形ABCD中,AB=4cm,动点E从点A出发,以1cm/秒的速度沿折线AB—BC的路径运动,到点C停止运动.过点E作 EF∥BD,EF与边AD(或边CD)交于点F,EF的长度y(cm)与点E的运动时间x(秒)的函数图象大致是
A.B.
C.D.
5、(4分)下面式子是二次根式的是( )
A.B.C.D.a
6、(4分)若一个函数中,随的增大而增大,且,则它的图象大致是( )
A.B.
C.D.
7、(4分)如图,已知四边形ABCD是平行四边形,下列结论不正确的是( )
A.AD=BCB.AC⊥BDC.∠DAC=∠BCAD.OA=OC
8、(4分)下列选项中,矩形具有的性质是( )
A.四边相等B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于x的方程有增根,则k的值为_____.
10、(4分)小明利用公式计算5个数据的方差,则这5个数据的标准差的值是_____.
11、(4分)如图,正方形ABCD的面积为1,则以相邻两边中点的连线EF为边的正方形EFGH的周长为________.
12、(4分)一次函数y=2x-1的图象在轴上的截距为______
13、(4分)如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东方向.问:小岛C于渔船的航行方向的距离是________________海里(结果可用带根号的数表示).
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,平行四边形中,在边上,,为平行四边形外一点,连接、,连接交于,且.
(1)若,,求平行四边形的面积;
(2)求证:.
15、(8分)据某市交通运管部门月份的最新数据,目前该市市面上的共享单车数量已达万辆,共享单车也逐渐成为高校学生喜爱的“绿色出行”方式之一.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.
(1)求这天部分出行学生使用共享单车次数的平均数,中位数和众数.
(2)若该校这天有名学生出行,估计使用共享单车次数在次以上(含次)的学生数.
16、(8分)某直销公司现有名推销员,月份每个人完成销售额(单位:万元),数据如下:
整理上面的数据得到如下统计表:
(1)统计表中的 ; ;
(2)销售额的平均数是 ;众数是 ;中位数是 .
(3)月起,公司为了提高推销员的积极性,将采取绩效工资制度:规定一个基本销售额,在基本销售额内,按抽成;从公司低成本与员工愿意接受两个层面考虑,你认为基本销售额定位多少万元?请说明理由.
17、(10分)如图,四边形是正方形,是边所在直线上的点,,且交正方形外角的平分线于点.
(1)当点在线段中点时(如图①),易证,不需证明;
(2)当点在线段上(如图②)或在线段延长线上(如图③)时,(1)中的结论是否仍然成立?请写出你的猜想,并选择图②或图③的一种结论给予证明.
18、(10分)如图,直角坐标系中,一次函数的图象分别与,轴交于,两点,正比例函数的图象与交于点.
(1)求的值及的解析式;
(2)求的值;
(3)一次函数的图象为,且,,不能围成三角形,直接写出的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为______.
20、(4分)平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=_____cm.
21、(4分)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为 __.
22、(4分)如图, x轴正半轴上,顶点D在y轴正半轴上,反比例函数y= (x>0)的图象与正比例函数y=x的图象交于点A.BC边经过点A,CD边与反比例函数图象交于点E,四边形OACE的面积为6.则点A的坐标为_____;
23、(4分)反比例函数的图象过点P(2,6),那么k的值是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足﹣(a﹣4)2≥0,c=+8.
(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;
(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;
(3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值.
25、(10分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?
26、(12分)解不等式组: ,并把它的解集在数轴上表示出来
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
直接利用绝对值的定义分析得出答案.
【详解】
解:-1的绝对值是:1.
故选:D.
此题主要考查了绝对值,正确把握绝对值的定义是解题关键.
2、B
【解析】
根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a≤ 且a≠6,然后找出此范围内的最大整数即可.
【详解】
根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,
解得a≤ 且a≠6,
所以整数a的最大值为5.
故选B.
本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.
3、D
【解析】解:∵点P在第四象限内,P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标为3,纵坐标为﹣4,∴点P的坐标为(3,﹣4).故选D.
点睛:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度是解题的关键.
4、A
【解析】
动点E从点A到点B运动时,EF的长度y(cm)随点E的运动时间x(秒)的增大而增大,运动到点B时EF的长度y最大,从点B到点C运动时,y随x的增大而减小,分别列出函数解析式,即可得出结论.
【详解】
解:由题可得:动点E从点A到点B运动时,EF的长度y(cm)随点E的运动时间x(秒)的增大而增大,此时,y=x ,是正比例函数,
运动到点B时EF的长度y最大,
最大值为 y= (cm),
从点B到点C运动时,y随x的增大而减小,此时,
y= ,是一次函数.
故选A.
本题考查动点函数图象,分情况列出函数解析式是解题关键.
5、A
【解析】
分析:直接利用二次根式定义分析得出答案.
详解:A、,∵a2+1>0,∴是二次根式,符合题意;
B、是三次根式,不合题意;
C、,无意义,不合题意;
D、a是整式,不合题意.
故选A.
点睛:此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.
6、B
【解析】
根据随的增大而增大,可以判断直线从左到右是上升的趋势,说明一次函数与轴的交点在轴正半轴,综合可以得出一次函数的图像.
【详解】
根据随的增大而增大,可以判断直线从左到右是上升的趋势,说明一次函数与轴的交点在轴正半轴,综合可以得出一次函数的图像为B
故选B
本题主要考查了一次函数的图像,以及和对图像的影响,掌握一次函数的图像和性质是解题的关键.
7、B
【解析】
根据平行四边形的性质即可一一判断.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC,OA=OC,AD∥BC,
∴∠DAC=∠BCA,
故A、C、D正确,
无法判断AC与DB是否垂直,故B错误;
故选:B.
本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质,属于中考基础题.
8、C
【解析】
根据矩形的性质逐项分析即可.
【详解】
A. 四边相等是菱形的性质,不是矩形的性质,故不符合题意;
B. 对角线互相垂直是菱形的性质,不是矩形的性质,故不符合题意;
C. 对角线相等是是矩形的性质,故符合题意;
D. 每条对角线平分一组对角是菱形的性质,不是矩形的性质,故不符合题意;
故选C.
本题考查了矩形的性质:①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分;
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
方程两边都乘以(x+1)(x-1)化为整式方程,由增根的概念将x=1和x=-1分别代入求解可得.
【详解】
解:方程两边都乘以(x+1)(x﹣1),得:2(x﹣1)+k(x+1)=6,
∵方程有增根,
∴x=1或x=﹣1,
当x=1时,2k=6,k=1;
当x=﹣1时,﹣4=6,显然不成立;
∴k=1,
故答案为1.
本题主要考查分式方程的增根,把分式方程的增根代入整式方程是解题关键.
10、
【解析】
先根据平均数的定义求出,再代入公式求出方差,然后求出方差的算术平方根即标准差的值.
【详解】
解:根据题意知,,
则,
.
故答案为.
本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了平均数与方差,解题的关键是熟练掌握基本知识,属于中考常考题型.
11、2
【解析】
由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.
【详解】
解:∵正方形ABCD的面积为1,
∴BC=CD==1,∠BCD=90°,
∵E、F分别是BC、CD的中点,
∴CE=BC=,CF=CD=,
∴CE=CF,
∴△CEF是等腰直角三角形,
∴EF=CE=,
∴正方形EFGH的周长=4EF=4×=2 ;
故答案为2.
本题考查正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解题关键.
12、-1
【解析】
根据截距的定义:一次函数y=kx+b中,b就是截距,解答即可.
【详解】
解:∵一次函数y=2x-1中b=-1,
∴图象在轴上的截距为-1.
故答案为:-1.
本题考查了一次函数图象上点的坐标特征.
13、
【解析】
过C作CD⊥AB,易得∠BAC=∠BCA=30°,进而得到BC=BA=20,在Rt△BCD中,利用30°角所对的直角边是斜边的一半与勾股定理即可求出CD.
【详解】
如图,过C作CD⊥AB,
∵渔船速度为30海里/h,40min后渔船行至B处
∴AB=海里
由图可知,∠BAC=90°-60°=30°,∠ABC=90°+30°=120°,
∴∠BCA=180°-120°-30°=30°
∴∠BAC=∠BCA
∴BC=BA=20海里
在Rt△BCD中,∠BCD=30°,
∴BD=BC=10海里
∴CD=海里
故答案为:.
本题考考查了等腰三角形的性质,含30°角的直角三角形的性质与勾股定理,熟练掌握30°角所对的直角边是斜边的一半是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1);(2)证明见解析.
【解析】
(1)过点作于点,由求出DH的长,然后根据平行四边形的面积求法求解即可;
(2)在上截取点,使,连接,首先证明和是等边三角形,即可得到,,,然后可证,根据全等三角形的性质易得结论.
【详解】
解:(1)过点作于点,
∵,
∴,
∴,
∵四边形是平行四边形,
∴,
∴,
∴,
(2)在上截取点,使,连接.
∵
∴是等边三角形,
∴,,
∵,,
∴AE=AB,
∵四边形是平行四边形,
∴,
∴是等边三角形,
∴,,
∵,
∴,
∴,
∴,
∴.
本题考查了平行四边形的性质、等边三角形的判定以及三角形全等的判定和性质,根据题意作出常用辅助线是解题关键.
15、(1)中位数是次,众数是次;(2)人.
【解析】
(1)根据平均数、中位数和众数的定义求解可得;
(2)用总人数乘以样本中使用共享单车次数在2次以上(含2次)的学生所占比例即可得.
【详解】
(1)
(次)
次数从小到大排列后,中间两个数是与
中位数是次
共享单车的使用次数中,出现最多的是次
众数是次
(2)
即该校这天使用共享单车次数在次以上(含 次)的学生约有人.
本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.
16、(1),;(2)平均数:,众数:,中位数:;(3)基本销售额定为万元,理由详见解析.
【解析】
(1)根据题干中的数据可得出a,b的值;
(2)按照平均数,中位数,众数的定义分别求得;
(3)根据平均数,中位数,众数的意义回答.
【详解】
解:(1),;
(2)平均数=(10×2+13×3+15+17×7+18+22×4+23×3+24×3+26×4+28×2)÷30=20(万元);
出现次数最多的是17万元,所以众数是17(万元);
把销售额按从小到大顺序排列后,第15,16位都是22万元,所以中位数是22(万元).
故答案为:;;.
(3)基本销售额定为万元.
理由:作为数据的代表,本组数据的平均数、众数、中位数三个量作为基本额都具有合理性.其中中位数为万最大,选择中位数对公司最有利,付出成本最低,对员工来说,这只是个中等水平,可以接受,所以选择中位数作为基本额.
考查学生对平均数、中位数、众数的计算及运用其进行分析的能力.
17、(1)见解析;(2)成立,理由见解析.
【解析】
(1)图①在AB上取一点M,使AM=EC,连接ME,证明△AME≌△BCF,从而可得到AE=EF;
(2)图②在AB上取一点M,使AM=EC,连接ME,证明△AME≌△BCF,从而可得到AE=EF;图③在BA的延长线上取一点N,使AN=CE,连接NE,然后证明△ANE≌△ECF,从而可得到AE=EF.
【详解】
解:在上取一点,使,连接.
∴.
∴.
∴.
∵是外角的平分线,
∴.
∴.
∴.
∵,,
∴.
∴.
∴.
(2)图②结论:.图③结论:.
图②证明:如图②,在上取一点,使,连接.
∴.
∴.
∴.
∵是外角的平分线,
∴.
∴.
∴.
∵,,
∴.
∴.
∴.
图③证明:如图③,在的延长线上取一点,使,连接.
∴.
∴.
∵四边形是正方形,
∴.
∴.
∴.
∴.
∴.
本题主要考查的是全等三角形的性质和判定、正方形的性质的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
18、(1);(2)4;(3)或2或.
【解析】
(1)先求得点的坐标,再运用待定系数法即可得到的解析式;
(2)过作于,于,则,,再根据,,可得,,进而得出的值;
(3)分三种情况:当经过点时,;当,平行时,;当,平行时,;故的值为或2或.
【详解】
解:(1)把代入一次函数,可得
,
解得,
,
设的解析式为,则,
解得,
的解析式为;
(2)如图,过作于,于,则,,
,令,则;令,则,
,,
,,
;
(3)一次函数的图象为,且,,不能围成三角形,
当经过点时,;
当,平行时,;
当,平行时,;
故的值为或2或.
本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、15°
【解析】
根据菱形的性质,可得∠ADC=∠B=70°,从而得出∠AED=∠ADE.又因为AD∥BC,故∠DAE=∠AEB=70°,∠ADE=∠AED=55°,即可求解.
【详解】
解:根据菱形的对角相等得∠ADC=∠B=70°.
∵AD=AB=AE,
∴∠AED=∠ADE.
根据折叠得∠AEB=∠B=70°.
∵AD∥BC,
∴∠DAE=∠AEB=70°,
∴∠ADE=∠AED=(180°-∠DAE)÷2=55°.
∴∠EDC=70°-55°=15°.
故答案为:15°.
本题考查了翻折变换,菱形的性质,三角形的内角和定理以及平行线的性质,熟练运用折叠的性质是本题的关键.
20、1.
【解析】
根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.
【详解】
解:∵平行四边形的周长为20cm,
∴AB+BC=10cm;
又△BOC的周长比△AOB的周长大2cm,
∴BC﹣AB=2cm,
解得:AB=1cm,BC=6cm.
∵AB=CD,
∴CD=1cm
故答案为1.
21、
【解析】
在菱形 中, ,设
22、 (3,2)
【解析】
把反比例函数与正比例函数的解析式组成方程组即可求出A点坐标;
【详解】
∵点A是反比例函数y= (x>0)的图象与正比例函数y=x的图象的交点,
∴,
解得 (舍去)或
∴A(3,2);
故答案为:(3,2)
此题考查反比例函数,解题关键在于把反比例函数与正比例函数的解析式组成方程组
23、1.
【解析】
试题分析:∵反比例函数的图象过点P(2,6),∴k=2×6=1,故答案为1.
考点:反比例函数图象上点的坐标特征.
二、解答题(本大题共3个小题,共30分)
24、(1)y=2x+8,D(2,2);(2)存在,5;(3).
【解析】
试题分析:(1)利用非负数的性质求出a,b,c的值,进而确定出直线y=bx+c,得到正方形的边长,即可确定出D坐标;
(2)存在,理由为:对于直线y=2x+8,令y=0求出x的值,确定出E坐标,根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线方程为y=2x+t,将D坐标代入求出b的值,确定出平移后直线解析式,进而确定出此直线与x轴的交点,从而求出平移距离,得到t的值;
(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,利用同角的余角相等得到一对角相等,再由一对直角相等,利用角平分线定理得到PH=PQ,利用AAS得到三角形OPH与三角形MPQ全等,得到OH=QM,根据四边形CNPG为正方形,得到PG=BQ=CN,由三角形CGP为等腰直角三角形得到CP=GP=BM,即可求出所求式子的值.
试题解析:(1)∵-(a-4)2≥0,,
∴a=4,b=2,c=8,
∴直线y=bx+c的解析式为:y=2x+8,
∵正方形OABC的对角线的交点D,且正方形边长为4,
∴D(2,2);
(2)存在,理由为:
对于直线y=2x+8,
当y=0时,x=-4,
∴E点的坐标为(-4,0),
根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,
设平移后的直线为y=2x+t,
代入D点坐标(2,2),
得:2=4+t,即t=-2,
∴平移后的直线方程为y=2x-2,
令y=0,得到x=1,
∴此时直线和x轴的交点坐标为(1,0),平移的距离为1-(-4)=5,
则t=5秒;
(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,
∵∠OPM=∠HPQ=90°,
∴∠OPH+∠HPM=90°,∠HPM+∠MPQ=90°,
∴∠OPH=∠MPQ,
∵AC为∠BAO平分线,且PH⊥OA,PQ⊥AB,
∴PH=PQ,
在△OPH和△MPQ中,
,
∴△OPH≌△MPQ(AAS),
∴OH=QM,
∵四边形CNPG为正方形,
∴PG=BQ=CN,
∴CP=PG=BM,
即.
考点:一次函数综合题.
【详解】
请在此输入详解!
25、2400元
【解析】
试题分析:连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.
试题解析:连结AC,
在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC=(米),
∵AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,
该区域面积S=S△ACB﹣S△ADC=×5×12﹣×3×4=24(平方米),
即铺满这块空地共需花费=24×100=2400元.
考点:1.勾股定理;2.勾股定理的逆定理.
26、.
【解析】
分析:
按照解一元一次不等式组的一般步骤进行解答,并把解集规范的表示在数轴上即可.
详解:
解不等式得:;
解不等式得:;
∴原不等式组的解集为:,
将解集表示在数轴上如下图所示:
点睛:熟记“一元一次不等式组的解法和不等式组的解集在数轴上的表示方法”是解答本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
使用次数
人数
销售额
人数
相关试卷
这是一份广东省广州市广州中学2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省广州市第65中学2024年数学九年级第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广东省广州大附中九年级数学第一学期开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
