开学活动
搜索
    上传资料 赚现金

    广东省广州四中学2025届九年级数学第一学期开学联考模拟试题【含答案】

    广东省广州四中学2025届九年级数学第一学期开学联考模拟试题【含答案】第1页
    广东省广州四中学2025届九年级数学第一学期开学联考模拟试题【含答案】第2页
    广东省广州四中学2025届九年级数学第一学期开学联考模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省广州四中学2025届九年级数学第一学期开学联考模拟试题【含答案】

    展开

    这是一份广东省广州四中学2025届九年级数学第一学期开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)的绝对值是( )
    A.B.C.D.
    2、(4分)若关于x的一元二次方程有实数根,则整数a的最大值是( )
    A.4B.5C.6D.7
    3、(4分)点P在第四象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )
    A.(-4,3) B.(-3,4) C.(4,-3) D.(3,-4)
    4、(4分)如图,在正方形ABCD中,AB=4cm,动点E从点A出发,以1cm/秒的速度沿折线AB—BC的路径运动,到点C停止运动.过点E作 EF∥BD,EF与边AD(或边CD)交于点F,EF的长度y(cm)与点E的运动时间x(秒)的函数图象大致是
    A.B.
    C.D.
    5、(4分)下面式子是二次根式的是( )
    A.B.C.D.a
    6、(4分)若一个函数中,随的增大而增大,且,则它的图象大致是( )
    A.B.
    C.D.
    7、(4分)如图,已知四边形ABCD是平行四边形,下列结论不正确的是( )
    A.AD=BCB.AC⊥BDC.∠DAC=∠BCAD.OA=OC
    8、(4分)下列选项中,矩形具有的性质是( )
    A.四边相等B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若关于x的方程有增根,则k的值为_____.
    10、(4分)小明利用公式计算5个数据的方差,则这5个数据的标准差的值是_____.
    11、(4分)如图,正方形ABCD的面积为1,则以相邻两边中点的连线EF为边的正方形EFGH的周长为________.
    12、(4分)一次函数y=2x-1的图象在轴上的截距为______
    13、(4分)如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东方向.问:小岛C于渔船的航行方向的距离是________________海里(结果可用带根号的数表示).
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,平行四边形中,在边上,,为平行四边形外一点,连接、,连接交于,且.
    (1)若,,求平行四边形的面积;
    (2)求证:.
    15、(8分)据某市交通运管部门月份的最新数据,目前该市市面上的共享单车数量已达万辆,共享单车也逐渐成为高校学生喜爱的“绿色出行”方式之一.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.
    (1)求这天部分出行学生使用共享单车次数的平均数,中位数和众数.
    (2)若该校这天有名学生出行,估计使用共享单车次数在次以上(含次)的学生数.
    16、(8分)某直销公司现有名推销员,月份每个人完成销售额(单位:万元),数据如下:


    整理上面的数据得到如下统计表:
    (1)统计表中的 ; ;
    (2)销售额的平均数是 ;众数是 ;中位数是 .
    (3)月起,公司为了提高推销员的积极性,将采取绩效工资制度:规定一个基本销售额,在基本销售额内,按抽成;从公司低成本与员工愿意接受两个层面考虑,你认为基本销售额定位多少万元?请说明理由.
    17、(10分)如图,四边形是正方形,是边所在直线上的点,,且交正方形外角的平分线于点.
    (1)当点在线段中点时(如图①),易证,不需证明;
    (2)当点在线段上(如图②)或在线段延长线上(如图③)时,(1)中的结论是否仍然成立?请写出你的猜想,并选择图②或图③的一种结论给予证明.
    18、(10分)如图,直角坐标系中,一次函数的图象分别与,轴交于,两点,正比例函数的图象与交于点.
    (1)求的值及的解析式;
    (2)求的值;
    (3)一次函数的图象为,且,,不能围成三角形,直接写出的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为______.
    20、(4分)平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=_____cm.
    21、(4分)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为 __.
    22、(4分)如图, x轴正半轴上,顶点D在y轴正半轴上,反比例函数y= (x>0)的图象与正比例函数y=x的图象交于点A.BC边经过点A,CD边与反比例函数图象交于点E,四边形OACE的面积为6.则点A的坐标为_____;
    23、(4分)反比例函数的图象过点P(2,6),那么k的值是 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足﹣(a﹣4)2≥0,c=+8.
    (1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;
    (2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;
    (3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值.
    25、(10分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?
    26、(12分)解不等式组: ,并把它的解集在数轴上表示出来

    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    直接利用绝对值的定义分析得出答案.
    【详解】
    解:-1的绝对值是:1.
    故选:D.
    此题主要考查了绝对值,正确把握绝对值的定义是解题关键.
    2、B
    【解析】
    根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a≤ 且a≠6,然后找出此范围内的最大整数即可.
    【详解】
    根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,
    解得a≤ 且a≠6,
    所以整数a的最大值为5.
    故选B.
    本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.
    3、D
    【解析】解:∵点P在第四象限内,P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标为3,纵坐标为﹣4,∴点P的坐标为(3,﹣4).故选D.
    点睛:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度是解题的关键.
    4、A
    【解析】
    动点E从点A到点B运动时,EF的长度y(cm)随点E的运动时间x(秒)的增大而增大,运动到点B时EF的长度y最大,从点B到点C运动时,y随x的增大而减小,分别列出函数解析式,即可得出结论.
    【详解】
    解:由题可得:动点E从点A到点B运动时,EF的长度y(cm)随点E的运动时间x(秒)的增大而增大,此时,y=x ,是正比例函数,
    运动到点B时EF的长度y最大,
    最大值为 y= (cm),
    从点B到点C运动时,y随x的增大而减小,此时,
    y= ,是一次函数.
    故选A.
    本题考查动点函数图象,分情况列出函数解析式是解题关键.
    5、A
    【解析】
    分析:直接利用二次根式定义分析得出答案.
    详解:A、,∵a2+1>0,∴是二次根式,符合题意;
    B、是三次根式,不合题意;
    C、,无意义,不合题意;
    D、a是整式,不合题意.
    故选A.
    点睛:此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.
    6、B
    【解析】
    根据随的增大而增大,可以判断直线从左到右是上升的趋势,说明一次函数与轴的交点在轴正半轴,综合可以得出一次函数的图像.
    【详解】
    根据随的增大而增大,可以判断直线从左到右是上升的趋势,说明一次函数与轴的交点在轴正半轴,综合可以得出一次函数的图像为B
    故选B
    本题主要考查了一次函数的图像,以及和对图像的影响,掌握一次函数的图像和性质是解题的关键.
    7、B
    【解析】
    根据平行四边形的性质即可一一判断.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD=BC,OA=OC,AD∥BC,
    ∴∠DAC=∠BCA,
    故A、C、D正确,
    无法判断AC与DB是否垂直,故B错误;
    故选:B.
    本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质,属于中考基础题.
    8、C
    【解析】
    根据矩形的性质逐项分析即可.
    【详解】
    A. 四边相等是菱形的性质,不是矩形的性质,故不符合题意;
    B. 对角线互相垂直是菱形的性质,不是矩形的性质,故不符合题意;
    C. 对角线相等是是矩形的性质,故符合题意;
    D. 每条对角线平分一组对角是菱形的性质,不是矩形的性质,故不符合题意;
    故选C.
    本题考查了矩形的性质:①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分;
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    方程两边都乘以(x+1)(x-1)化为整式方程,由增根的概念将x=1和x=-1分别代入求解可得.
    【详解】
    解:方程两边都乘以(x+1)(x﹣1),得:2(x﹣1)+k(x+1)=6,
    ∵方程有增根,
    ∴x=1或x=﹣1,
    当x=1时,2k=6,k=1;
    当x=﹣1时,﹣4=6,显然不成立;
    ∴k=1,
    故答案为1.
    本题主要考查分式方程的增根,把分式方程的增根代入整式方程是解题关键.
    10、
    【解析】
    先根据平均数的定义求出,再代入公式求出方差,然后求出方差的算术平方根即标准差的值.
    【详解】
    解:根据题意知,,
    则,

    故答案为.
    本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了平均数与方差,解题的关键是熟练掌握基本知识,属于中考常考题型.
    11、2
    【解析】
    由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.
    【详解】
    解:∵正方形ABCD的面积为1,
    ∴BC=CD==1,∠BCD=90°,
    ∵E、F分别是BC、CD的中点,
    ∴CE=BC=,CF=CD=,
    ∴CE=CF,
    ∴△CEF是等腰直角三角形,
    ∴EF=CE=,
    ∴正方形EFGH的周长=4EF=4×=2 ;
    故答案为2.
    本题考查正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解题关键.
    12、-1
    【解析】
    根据截距的定义:一次函数y=kx+b中,b就是截距,解答即可.
    【详解】
    解:∵一次函数y=2x-1中b=-1,
    ∴图象在轴上的截距为-1.
    故答案为:-1.
    本题考查了一次函数图象上点的坐标特征.
    13、
    【解析】
    过C作CD⊥AB,易得∠BAC=∠BCA=30°,进而得到BC=BA=20,在Rt△BCD中,利用30°角所对的直角边是斜边的一半与勾股定理即可求出CD.
    【详解】
    如图,过C作CD⊥AB,
    ∵渔船速度为30海里/h,40min后渔船行至B处
    ∴AB=海里
    由图可知,∠BAC=90°-60°=30°,∠ABC=90°+30°=120°,
    ∴∠BCA=180°-120°-30°=30°
    ∴∠BAC=∠BCA
    ∴BC=BA=20海里
    在Rt△BCD中,∠BCD=30°,
    ∴BD=BC=10海里
    ∴CD=海里
    故答案为:.
    本题考考查了等腰三角形的性质,含30°角的直角三角形的性质与勾股定理,熟练掌握30°角所对的直角边是斜边的一半是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1);(2)证明见解析.
    【解析】
    (1)过点作于点,由求出DH的长,然后根据平行四边形的面积求法求解即可;
    (2)在上截取点,使,连接,首先证明和是等边三角形,即可得到,,,然后可证,根据全等三角形的性质易得结论.
    【详解】
    解:(1)过点作于点,
    ∵,
    ∴,
    ∴,
    ∵四边形是平行四边形,
    ∴,
    ∴,
    ∴,
    (2)在上截取点,使,连接.

    ∴是等边三角形,
    ∴,,
    ∵,,
    ∴AE=AB,
    ∵四边形是平行四边形,
    ∴,
    ∴是等边三角形,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴.
    本题考查了平行四边形的性质、等边三角形的判定以及三角形全等的判定和性质,根据题意作出常用辅助线是解题关键.
    15、(1)中位数是次,众数是次;(2)人.
    【解析】
    (1)根据平均数、中位数和众数的定义求解可得;
    (2)用总人数乘以样本中使用共享单车次数在2次以上(含2次)的学生所占比例即可得.
    【详解】
    (1)
    (次)
    次数从小到大排列后,中间两个数是与
    中位数是次
    共享单车的使用次数中,出现最多的是次
    众数是次
    (2)
    即该校这天使用共享单车次数在次以上(含 次)的学生约有人.
    本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.
    16、(1),;(2)平均数:,众数:,中位数:;(3)基本销售额定为万元,理由详见解析.
    【解析】
    (1)根据题干中的数据可得出a,b的值;
    (2)按照平均数,中位数,众数的定义分别求得;
    (3)根据平均数,中位数,众数的意义回答.
    【详解】
    解:(1),;
    (2)平均数=(10×2+13×3+15+17×7+18+22×4+23×3+24×3+26×4+28×2)÷30=20(万元);
    出现次数最多的是17万元,所以众数是17(万元);
    把销售额按从小到大顺序排列后,第15,16位都是22万元,所以中位数是22(万元).
    故答案为:;;.
    (3)基本销售额定为万元.
    理由:作为数据的代表,本组数据的平均数、众数、中位数三个量作为基本额都具有合理性.其中中位数为万最大,选择中位数对公司最有利,付出成本最低,对员工来说,这只是个中等水平,可以接受,所以选择中位数作为基本额.
    考查学生对平均数、中位数、众数的计算及运用其进行分析的能力.
    17、(1)见解析;(2)成立,理由见解析.
    【解析】
    (1)图①在AB上取一点M,使AM=EC,连接ME,证明△AME≌△BCF,从而可得到AE=EF;
    (2)图②在AB上取一点M,使AM=EC,连接ME,证明△AME≌△BCF,从而可得到AE=EF;图③在BA的延长线上取一点N,使AN=CE,连接NE,然后证明△ANE≌△ECF,从而可得到AE=EF.
    【详解】
    解:在上取一点,使,连接.
    ∴.
    ∴.
    ∴.
    ∵是外角的平分线,
    ∴.
    ∴.
    ∴.
    ∵,,
    ∴.
    ∴.
    ∴.
    (2)图②结论:.图③结论:.
    图②证明:如图②,在上取一点,使,连接.
    ∴.
    ∴.
    ∴.
    ∵是外角的平分线,
    ∴.
    ∴.
    ∴.
    ∵,,
    ∴.
    ∴.
    ∴.
    图③证明:如图③,在的延长线上取一点,使,连接.
    ∴.
    ∴.
    ∵四边形是正方形,
    ∴.
    ∴.
    ∴.
    ∴.
    ∴.
    本题主要考查的是全等三角形的性质和判定、正方形的性质的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    18、(1);(2)4;(3)或2或.
    【解析】
    (1)先求得点的坐标,再运用待定系数法即可得到的解析式;
    (2)过作于,于,则,,再根据,,可得,,进而得出的值;
    (3)分三种情况:当经过点时,;当,平行时,;当,平行时,;故的值为或2或.
    【详解】
    解:(1)把代入一次函数,可得

    解得,

    设的解析式为,则,
    解得,
    的解析式为;
    (2)如图,过作于,于,则,,
    ,令,则;令,则,
    ,,
    ,,

    (3)一次函数的图象为,且,,不能围成三角形,
    当经过点时,;
    当,平行时,;
    当,平行时,;
    故的值为或2或.
    本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、15°
    【解析】
    根据菱形的性质,可得∠ADC=∠B=70°,从而得出∠AED=∠ADE.又因为AD∥BC,故∠DAE=∠AEB=70°,∠ADE=∠AED=55°,即可求解.
    【详解】
    解:根据菱形的对角相等得∠ADC=∠B=70°.
    ∵AD=AB=AE,
    ∴∠AED=∠ADE.
    根据折叠得∠AEB=∠B=70°.
    ∵AD∥BC,
    ∴∠DAE=∠AEB=70°,
    ∴∠ADE=∠AED=(180°-∠DAE)÷2=55°.
    ∴∠EDC=70°-55°=15°.
    故答案为:15°.
    本题考查了翻折变换,菱形的性质,三角形的内角和定理以及平行线的性质,熟练运用折叠的性质是本题的关键.
    20、1.
    【解析】
    根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.
    【详解】
    解:∵平行四边形的周长为20cm,
    ∴AB+BC=10cm;
    又△BOC的周长比△AOB的周长大2cm,
    ∴BC﹣AB=2cm,
    解得:AB=1cm,BC=6cm.
    ∵AB=CD,
    ∴CD=1cm
    故答案为1.
    21、
    【解析】
    在菱形 中, ,设


    22、 (3,2)
    【解析】
    把反比例函数与正比例函数的解析式组成方程组即可求出A点坐标;
    【详解】
    ∵点A是反比例函数y= (x>0)的图象与正比例函数y=x的图象的交点,
    ∴,
    解得 (舍去)或
    ∴A(3,2);
    故答案为:(3,2)
    此题考查反比例函数,解题关键在于把反比例函数与正比例函数的解析式组成方程组
    23、1.
    【解析】
    试题分析:∵反比例函数的图象过点P(2,6),∴k=2×6=1,故答案为1.
    考点:反比例函数图象上点的坐标特征.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=2x+8,D(2,2);(2)存在,5;(3).
    【解析】
    试题分析:(1)利用非负数的性质求出a,b,c的值,进而确定出直线y=bx+c,得到正方形的边长,即可确定出D坐标;
    (2)存在,理由为:对于直线y=2x+8,令y=0求出x的值,确定出E坐标,根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线方程为y=2x+t,将D坐标代入求出b的值,确定出平移后直线解析式,进而确定出此直线与x轴的交点,从而求出平移距离,得到t的值;
    (3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,利用同角的余角相等得到一对角相等,再由一对直角相等,利用角平分线定理得到PH=PQ,利用AAS得到三角形OPH与三角形MPQ全等,得到OH=QM,根据四边形CNPG为正方形,得到PG=BQ=CN,由三角形CGP为等腰直角三角形得到CP=GP=BM,即可求出所求式子的值.
    试题解析:(1)∵-(a-4)2≥0,,
    ∴a=4,b=2,c=8,
    ∴直线y=bx+c的解析式为:y=2x+8,
    ∵正方形OABC的对角线的交点D,且正方形边长为4,
    ∴D(2,2);
    (2)存在,理由为:
    对于直线y=2x+8,
    当y=0时,x=-4,
    ∴E点的坐标为(-4,0),
    根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,
    设平移后的直线为y=2x+t,
    代入D点坐标(2,2),
    得:2=4+t,即t=-2,
    ∴平移后的直线方程为y=2x-2,
    令y=0,得到x=1,
    ∴此时直线和x轴的交点坐标为(1,0),平移的距离为1-(-4)=5,
    则t=5秒;
    (3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,
    ∵∠OPM=∠HPQ=90°,
    ∴∠OPH+∠HPM=90°,∠HPM+∠MPQ=90°,
    ∴∠OPH=∠MPQ,
    ∵AC为∠BAO平分线,且PH⊥OA,PQ⊥AB,
    ∴PH=PQ,
    在△OPH和△MPQ中,

    ∴△OPH≌△MPQ(AAS),
    ∴OH=QM,
    ∵四边形CNPG为正方形,
    ∴PG=BQ=CN,
    ∴CP=PG=BM,
    即.
    考点:一次函数综合题.
    【详解】
    请在此输入详解!
    25、2400元
    【解析】
    试题分析:连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.
    试题解析:连结AC,
    在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC=(米),
    ∵AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,
    该区域面积S=S△ACB﹣S△ADC=×5×12﹣×3×4=24(平方米),
    即铺满这块空地共需花费=24×100=2400元.
    考点:1.勾股定理;2.勾股定理的逆定理.
    26、.
    【解析】
    分析:
    按照解一元一次不等式组的一般步骤进行解答,并把解集规范的表示在数轴上即可.
    详解:
    解不等式得:;
    解不等式得:;
    ∴原不等式组的解集为:,
    将解集表示在数轴上如下图所示:
    点睛:熟记“一元一次不等式组的解法和不等式组的解集在数轴上的表示方法”是解答本题的关键.
    题号





    总分
    得分
    批阅人
    使用次数
    人数
    销售额
    人数

    相关试卷

    广东省广州市广州中学2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】:

    这是一份广东省广州市广州中学2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省广州市第65中学2024年数学九年级第一学期开学检测模拟试题【含答案】:

    这是一份广东省广州市第65中学2024年数学九年级第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届广东省广州大附中九年级数学第一学期开学统考模拟试题【含答案】:

    这是一份2025届广东省广州大附中九年级数学第一学期开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map