广东省广州中学2025届九上数学开学综合测试试题【含答案】
展开
这是一份广东省广州中学2025届九上数学开学综合测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形ABCD中,如果∠A+∠C=100°,则∠B的度数是( )
A.130°B.80°C.100°D.50°
2、(4分)在平面直角坐标系中,点向上平移2个单位后的对应点的坐标为( )
A.B.C.D.
3、(4分)如图,在▱ABCD中,对角线AC、BD交于点O,下列式子中不一定成立的是( )
A.AB∥CDB.OA=OCC.∠ABC+∠BCD=180°D.AB=BC
4、(4分)点(1,m)为直线上一点,则OA的长度为
A.1B.C.D.
5、(4分)15名同学参加八年级数学竞赛初赛,他们的得分互不相同,按从高分到低分的原则,录取前8名同学参加复赛,现在小聪同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )
A.平均数B.中位数C.众数D.方差
6、(4分)如图,在中,点D、E、F分别在边、、上,且,.下列四种说法: ①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形. 其中,正确的有( ) 个
A.1B.2C.3D.4
7、(4分)如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE,设,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )(提示:过点E、C、D作AB的垂线)
A.线段PDB.线段PCC.线段DED.线段PE
8、(4分)下列图形中,是轴对称图形,不是中心对称图形的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果一个多边形的每一个外角都等于60°,则它的内角和是__________.
10、(4分)如图,为等边三角形,,,点为线段上的动点,连接,以为边作等边,连接,则线段的最小值为___________.
11、(4分)已知点P(m-3,m+1)在第二象限,则m的取值范围是_______________.
12、(4分)某公司有一名经理和10名雇员共11名员工,他们的月工资情况(单位:元)如下:30000,2350,2350,2250,2250,2250,2250,2150,2050,1950,1850.上述数据的平均数是__________,中位数是________.通过上面得到的结果不难看出:用_________(填“平均数”或“中位数”)更能准确地反映出该公司全体员工的月人均收入水平.
13、(4分)的整数部分是a,小数部分是b,则________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.
(1)若该城市某户6月份用水18吨,该户6月份水费是多少?
(2)设某户某月用水量为x吨(x>20),应缴水费为y元,求y关于x的函数关系式.
15、(8分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:
(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?
(2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?
(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?
16、(8分)如图,在平行四边形中,连接,,且,是的中点,是延长线上一点,且.求证:.
17、(10分)如图,矩形中,点在边上,将沿折叠,点落在边上的点处,过点作交于点,连接.
(1)求证:四边形是菱形;
(2)若,求四边形的面积.
18、(10分)在平面直角坐标系xOy中,直线l1:过点A(3,0),且与直线l2:交于点B(m,1).
(1)求直线l1:的函数表达式;
(2)过动点P(n,0)且垂于x轴的直线与l1、l2分别交于点C、D,当点C位于点D上方时,直接写出n的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是______.
20、(4分)有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是 .
21、(4分)一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1小时后,它们相距______________海里.
22、(4分)以正方形ABCD的边AD为一边作等边△ADE,则∠AEB的度数是________.
23、(4分)当x=______时,分式的值为0.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,E是平行四边形ABCD的边BA延长线上一点,AE=AB,连结AC、DE、CE.
(1)求证:四边形ACDE为平行四边形.
(2)若AB=AC,AD=4,CE=6,求四边形ACDE的面积.
25、(10分)如图,矩形纸片ABCD中,AD=8,点E为AD上一点,将纸片沿BE折叠,使点F落到CD边上,若DF=4,求EF的长.
26、(12分)分解因式
(1)20a3-30a2
(2)25(x+y)2-9(x-y)2
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据平行四边形的性质即可解答.
【详解】
解:在平行四边形ABCD中,
∠A+∠C=100°,
故∠A=∠C=50°,
且AD∥BC,
故∠B=180°-50°=130°.
故答案选A.
本题考查平行四边形性质,对边平行,熟悉掌握是解题关键.
2、B
【解析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.
【详解】
解:把点A(﹣4,﹣3)向上平移2个单位后的对应点A1的坐标为(﹣4,﹣3+2),
即(﹣4,﹣1),
故选:B.
此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.
3、D
【解析】
根据平行四边形的性质分析即可.
【详解】
解:由平行四边形的性质可知:
平行四边形对边平行,故A一定成立,不符合题意;
平行四边形的对角线互相平分;故B一定成立,不符合题意;
平行四边形对边平行,所以邻角互补,故C一定成立,不符合题意;
平行四边形的邻边不一定相等,只有为菱形或正方形时才相等,故D不一定成立,符合题意.
故选:D.
本题主要考查了平行四边形的性质,熟练掌握平行四边形的性质是解决问题的关键.
4、C
【解析】
根据题意可以求得点A的坐标,从而可以求得OA的长.
【详解】
【∵点A(1,m)为直线y=2x-1上一点,
∴m=2×1-1,
解得,m=1,
∴点A的坐标为(1,1),
故
故选:C.
本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质和勾股定理解答.
5、B
【解析】
由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于15个人中,第8名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.
故选B.
本题考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
6、D
【解析】
先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.
【详解】
解:∵DE∥CA,DF∥BA,
∴四边形AEDF是平行四边形,选项①正确;
若∠BAC=90°,
∴平行四边形AEDF为矩形,选项②正确;
若AD平分∠BAC,
∴∠EAD=∠FAD,
又DE∥CA,∴∠EDA=∠FAD,
∴∠EAD=∠EDA,
∴AE=DE,
∴平行四边形AEDF为菱形,选项③正确;
若AB=AC,AD⊥BC,
∴AD平分∠BAC,
同理可得平行四边形AEDF为菱形,选项④正确,
则其中正确的个数有4个.
故选D.
此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.
7、D
【解析】
先设等边三角形的边长为1个单位长度,再根据等边三角形的性质确定各线段取最小值时x的取值,再结合函数图像得到结论.
【详解】
设等边三角形的边长为1,则0≤x≤1,
如图1,分别过点E,C,D作垂线,垂足分别为F,G,H,
∵点E、D分别是AC,BC边的中点,根据等边三角形的性质可得,
当x=时,线段PE有最小值;
当x=时,线段PC有最小值;
当x=时,线段PD有最小值;
又DE是△ABC的中位线为定值,
由图2可知,当x=时,函数有最小值,故这条线段为PE,
故选D.
此题主要考查函数图像,解题的关键是熟知等边三角形、三角形中位线的性质.
8、B
【解析】
根据轴对称图形的定义和中心对称图形的定义逐一判断即可.
【详解】
A选项是轴对称图形,也是中心对称图形,故本选项不符合题意;
B选项是轴对称图形,不是中心对称图形,故本选项符合题意;
C选项是轴对称图形,也是中心对称图形,故本选项不符合题意;
D选项是轴对称图形,也是中心对称图形,故本选项不符合题意.
故选B.
此题考查的是轴对称图形和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、720°
【解析】
根据多边形的外角和等于360°,可求出这个多边形的边数,进而,求出这个多边形的内角和.
【详解】
∵一个多边形的每一个外角都等于60°,
又∵多边形的外角和等于360°,
∴这个多边形的边数=360°÷60°=6,
∴这个多边形的内角和=,
故答案是:720°.
本题主要考查多边形的外角和等于360°以及多边形的内角和公式,掌握多边形的外角和等于360°是解题的关键.
10、
【解析】
连接BF,由等边三角形的性质可得三角形全等的条件,从而可证△BCF≌△ACE,推出∠CBF=∠CAE=30°,再由垂线段最短可知当DF⊥BF时,DF值最小,利用含30°的直角三角形的性质定理可求DF的值.
【详解】
解:如图,连接BF
∵△ABC为等边三角形,AD⊥BC,AB=6,
∴BC=AC=AB=6,BD=DC=3,∠BAC=∠ACB=60°,∠CAE=30°
∵△CEF为等边三角形
∴CF=CE,∠FCE=60°
∴∠FCE=∠ACB
∴∠BCF=∠ACE
∴在△BCF和△ACE中
BC=AC,∠BCF=∠ACE,CF=CE
∴△BCF≌△ACE(SAS)
∴∠CBF=∠CAE=30°,AE=BF
∴当DF⊥BF时,DF值最小
此时∠BFD=90°,∠CBF=30°,BD=3
∴DF=BD=
故答案为:.
本题考查了构造全等三角形来求线段最小值,同时也考查了30°所对直角边等于斜边的一半及垂线段最短等几何知识点,具有较强的综合性.
11、﹣1<m<1
【解析】
试题分析:让点P的横坐标小于0,纵坐标大于0列式求值即可.
解:∵点P(m﹣1,m+1)在第二象限,
∴m﹣1<0,m+1>0,
解得:﹣1<m<1.故填:﹣1<m<1.
【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
12、4700 2250 中位数
【解析】
分析:
根据“平均数”、“中位数”的定义和计算方法进行计算判断即可.
详解:
(1)这组数据的平均数为:
(30000+2350+2350+2250+2250+2250+2250+2150+2050+1950+1850)÷11
=4700(元);
(2)由题中数据可知,这组数据按从大到小的顺序排列后,排在最中间的一个数是2250元,
∴这组数据的中位数是:2250;
(3)∵这组数据中多数数据更接近中位数2250,且都与平均数相差较多,
∴用“中位数”更能反映出该公司全体员工的月人均收入水平.
综上所述:本题答案为:(1)4700;(2)2250;(3)中位数.
点睛:熟记“平均数、中位数的定义和计算方法”是正确解答本题的关键.
13、2
【解析】
因为1<<2,由此得到的整数部分a,再进一步表示出其小数部分b.
【详解】
因为1
相关试卷
这是一份广东省广州市越秀区广东实验中学2024-2025学年数学九上开学综合测试试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省广州市省实教育集团2024-2025学年九上数学开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省广州市东环中学2024年九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。