终身会员
搜索
    上传资料 赚现金

    广东省惠州惠阳区六校联考2024-2025学年九年级数学第一学期开学复习检测试题【含答案】

    立即下载
    加入资料篮
    广东省惠州惠阳区六校联考2024-2025学年九年级数学第一学期开学复习检测试题【含答案】第1页
    广东省惠州惠阳区六校联考2024-2025学年九年级数学第一学期开学复习检测试题【含答案】第2页
    广东省惠州惠阳区六校联考2024-2025学年九年级数学第一学期开学复习检测试题【含答案】第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省惠州惠阳区六校联考2024-2025学年九年级数学第一学期开学复习检测试题【含答案】

    展开

    这是一份广东省惠州惠阳区六校联考2024-2025学年九年级数学第一学期开学复习检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)生活处处有数学:在五一出游时,小明在沙滩上捡到一个美丽的海螺,经仔细观察海螺的花纹后画出如图所示的蝶旋线,该螺旋线由一系列直角三角形组成,请推断第n个三角形的面积为( )
    A.B.C.D.
    2、(4分)如图,在矩形ABED中,AB=4,BE=EC=2,动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是( )
    A.B.
    C.D.
    3、(4分)下列各式计算正确的是( )
    A.(2a2)•(3a3)=6a6B.6a2b÷2a=3b
    C.3a2﹣2a2=a2D.+=
    4、(4分)某校篮球队队员的年龄分布情况如下表,则该校篮球队队员的平均年龄为( )
    A.13岁B.13.5岁C.13.7岁D.14岁
    5、(4分)如图,在四边形中,,分别是的中点,则四边形一定是( )
    A.平行四边形B.矩形C.菱形D.正方形
    6、(4分)二次根式中,字母的取值范围是( )
    A.B.C.D.
    7、(4分)将0.000008这个数用科学记数法表示为( )
    A.8×10-6B.8×10-5C.0.8×10-5D.8×10-7
    8、(4分)某校对八年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):4、4、3.5、5、5、4,这组数据的众数是( )
    A.4B.3.5C.5D.3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若有意义,则x的取值范围是____.
    10、(4分)函数有意义,则自变量x的取值范围是___.
    11、(4分)如图,在□ABCD中,对角线AC、BD相交于点O,AB=OB,E为AC上一点,BE平分∠ABO,EF⊥BC于点F,∠CAD=45°,EF交BD于点P,BP=,则BC的长为_______.
    12、(4分)数据、、、、的方差是____.
    13、(4分)若三角形的周长为28cm,则它的三条中位线组成的三角形的周长是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在中,点是对角线的中点,点在上,且,连接并延长交于点F.过点作的垂线,垂足为,交于点.
    (1)求证:;
    (2)若.
    ①求证:;
    ②探索与的数量关系,并说明理由.
    15、(8分)如图,正方形,点为射线上的一个动点,点为的中点,连接,过点作于点.
    (1)请找出图中一对相似三角形,并证明;
    (2)若,以点为顶点的三角形与相似,试求出的长.
    16、(8分)如图,两块大小不等的等腰直角三角形按图1放置,点为直角顶点,点在上,将绕点顺时针旋转角度,连接、.
    (1)若,则当 时,四边形是平行四边形;
    (2)图2,若于点,延长交于点,求证:是的中点;
    (3)图3,若点是的中点,连接并延长交于点,求证:.
    17、(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.
    (1)求证:△ABG≌△AFG;
    (2)求BG的长.
    18、(10分)如图,在中,,从点为圆心,长为半径画弧交线段于点,以点为圆心长为半径画弧交线段于点,连结.
    (1)若,求的度数:
    (2)设.
    ①请用含的代数式表示与的长;
    ②与的长能同时是方程的根吗?说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)以1,1,为边长的三角形是___________三角形.
    20、(4分)一个装有进水管出水管的容器,从某时刻起只打开进水管进水,经过一段时间,在打开出水管放水,至15分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(升)与时间x(分钟)之间的关系如图所示,关停进水管后,经过_____________分钟,容器中的水恰好放完.
    21、(4分)不等式组的所有整数解的积是___________.
    22、(4分)甲、乙两同学参加学校运动员铅球项目选拔赛,各投掷6次,记录成绩,计算平均数和方差的结果为:,则成绩较稳定的是_______(填“甲”或“乙”).
    23、(4分)计算:=________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°
    (1)求证:AG=FG;
    (2)如图2延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD的长.
    25、(10分)《北京中小学语文学科教学21条改进意见》中的第三条指出:“在教学中重视对国学经典文化的学习,重视历史文化的熏陶,加强与革命传统教育的结合,使学生了解中华文化的悠久历史,增强民族文化自信和价值观自信,使语文教学成为涵养社会主义核心价值观的重要源泉之一”.为此,昌平区掀起了以“阅读经典作品,提升思维品质”为主题的读书活动热潮,在一个月的活动中随机调查了某校初二年级学生的周人均阅读时间的情况,整理并绘制了如下的统计图表:
    某校初二年级学生周人均阅读时间频数分布表
    请根据以上信息,解答下列问题:
    (1)在频数分布表中a=______,b=______;
    (2)补全频数分布直方图;
    (3)若该校有1600名学生,根据调查数据请你估计,该校学生周人均阅读时间不少于6小时的学生大约有______人.
    26、(12分)善于思考的小鑫同学,在一次数学活动中,将一副直角三角板如图放置,,,在同一直线上,且,,,,量得,求的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据勾股定理分别求出、,根据三角形的面积公式分别求出第一个、第二个、第三个三角形的面积,总结规律,根据规律解答即可.
    【详解】
    解:第1个三角形的面积,
    由勾股定理得,,
    则第2个三角形的面积,

    则第3个三角形的面积,
    则第个三角形的面积,
    故选:.
    本题考查的是勾股定理,如果直角三角形的两条直角边长分别是,,斜边长为,那么.
    2、D
    【解析】
    分别求出点P在DE、AD、AB上运动时,S与t的函数关系式,继而根据函数图象的方向即可得出答案.
    【详解】
    解:根据题意得:
    当点P在ED上运动时,S=BC•PE=2t(0≤t≤4);
    当点P在DA上运动时,此时S=8(4<t<6);
    当点P在线段AB上运动时,S=BC(AB+AD+DE﹣t)=20﹣2t(6≤t≤10);
    结合选项所给的函数图象,可得D选项符合题意.
    故选:D.
    本题考查了动点问题的函数图象,解答该类问题也可以不把函数图象的解析式求出来,利用排除法进行解答.
    3、C
    【解析】
    直接利用二次根式的加减运算法则以及同底数幂的乘除运算法则和合并同类项运算法则分别判断得出答案.
    【详解】
    A、(2a2)•(3a3)=6a5,故此选项错误;
    B、6a2b÷2a=3ab,故此选项错误;
    C、3a2﹣2a2=a2,正确;
    D、+,无法计算,故此选项错误;
    故选:C.
    此题主要考查了二次根式的加减运算以及同底数幂的乘除运算和合并同类项运算,正确掌握相关运算法则是解题关键.
    4、C
    【解析】
    根据加权平均数的计算公式计算可得.
    【详解】
    解:该校篮球队队员的平均年龄为:(岁)
    故答案为:C.
    本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.
    5、B
    【解析】
    根据三角形中位线定理,平行四边形的判定定理得到四边形EFGH为平行四边形,证明∠FGH=90°,根据矩形的判定定理证明.
    【详解】
    ∵E,F分别是边AB,BC的中点,
    ∴EF=AC,EF∥AC,
    同理,HG=AC,HG∥AC,
    ∴EF=HG,EF∥HG,
    ∴四边形EFGH为平行四边形,
    ∵F,G分别是边BC,CD的中点,
    ∴FG∥BD,

    ∴∠FGH=90°,
    ∴平行四边形EFGH为矩形,
    故选B.
    本题考查的是中点四边形,掌握三角形中位线定理,矩形的判定定理是解题的关键.
    6、D
    【解析】
    根据被开方数是非负数列式求解即可.
    【详解】
    由题意得
    1-3a≥0,
    ∴.
    故选D.
    本题考查了二次根式的定义,形如的式子叫二次根式,熟练掌握二次根式成立的条件是解答本题的关键.
    7、A
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.
    【详解】
    0.000008用科学计数法表示为8×10-6 ,
    故选A.
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    8、A
    【解析】
    一组数据中出现次数最多的数据叫做众数,依此求解即可.
    【详解】
    在这一组数据中4出现了3次,次数最多,故众数是4.
    故选:A.
    考查众数的概念,掌握众数的概念是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x≥1.
    【解析】
    直接利用二次根式有意义的条件进而分析得出答案.
    【详解】
    ∵有意义,∴x≥1,
    故答案为:x≥1.
    此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
    10、且
    【解析】
    求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件进行求解即可.
    【详解】
    要使在实数范围内有意义,
    必须
    所以x≥1且,
    故答案为:x≥1且.
    本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
    11、1
    【解析】
    过点E作EM∥AD,由△ABO是等腰三角形,根据三线合一可知点E是AO的中点,可证得EM=AD=BC,根据已知可求得∠CEF=∠ECF=15°,从而得∠BEF=15°,△BEF为等腰直角三角形,可得BF=EF=FC=BC,因此可证明△BFP≌△MEP(AAS),则EP=FP=FC,在Rt△BFP中,利用勾股定理可求得x,即得答案.
    【详解】
    过点E作EM∥AD,交BD于M,设EM=x,
    ∵AB=OB,BE平分∠ABO,
    ∴△ABO是等腰三角形,点E是AO的中点,BE⊥AO,∠BEO=90°,
    ∴EM是△AOD的中位线,
    又∵ABCD是平行四边形,
    ∴BC=AD=2EM=2x,
    ∵EF⊥BC, ∠CAD=15°,AD∥BC,
    ∴∠BCA=∠CAD=15°,∠EFC=90°,
    ∴△EFC为等腰直角三角形,
    ∴EF=FC,∠FEC=15°,
    ∴∠BEF=90°-∠FEC=15°,
    则△BEF为等腰直角三角形,
    ∴BF=EF=FC=BC=x,
    ∵EM∥BF,
    ∴∠EMP=∠FBP,∠PEM=∠PFB=90°,EM=BF,
    则△BFP≌△MEP(ASA),
    ∴EP=FP=EF=FC=x,
    ∴在Rt△BFP中,,
    即:,
    解得:,
    ∴BC=2=1,
    故答案为:1.
    考查了平行四边形的性质,等腰三角形的性质,三线合一的应用,平行线的性质,全等三角形的判定和性质,利用勾股定理求三角形边长,熟记图形的性质定理是解题的关键.
    12、
    【解析】
    分析:先求平均数,根据方差公式求解即可.
    详解:数据1,2,3,3,6的平均数
    ∴数据1,2,3,3,6的方差:

    故答案为:
    点睛:考查方差的计算,记忆方差公式是解题的关键.
    13、14cm
    【解析】
    根据三角形中位线定理得到EF=BC,DF=AB,DE=AC,根据三角形的周长公式计算即可.
    【详解】
    解:∵△ABC的周长为28,
    ∴AB+AC+BC=28cm,
    ∵点D、E、F分别是BC、AB、AC的中点,
    ∴EF=BC,DF=AB,DE=AC,
    ∴△DEF的周长=DE+EF+DF=(AC+BC+AB)=14(cm),
    故答案为:14cm.
    本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)①见解析,②,理由见解析.
    【解析】
    (1)根据平行四边形的性质得到∠OAF=∠OCE,证明△OAF≌△OCE,根据全等三角形的对应边相等证明结论;
    (2)①过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,根据三角形的外角性质得到∠BAG=∠BGA;
    ②证明△AME≌△BNG,根据全等三角形的性质得到ME=NG,根据等腰直角三角形的性质得到BE=GC,根据(1)中结论证明即可.
    【详解】
    (1)证明:∵四边形是平行四边形,
    ∴,,
    ∴,
    在和中,


    ∴,
    ∵,
    ∴;
    (2)①过作于,交于,过作于,
    则,
    ∵,
    ∴,
    ∵,
    ∴,,
    ∵,
    ∴,又,
    ∴,
    设,
    则,,
    ∴;
    ②,
    理由如下:∵,
    ∴,
    ∴,
    在和中,

    ∴,
    ∴,
    在等腰中,,
    ∴,
    ∴,
    ∵,
    ∴.
    本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论.
    15、(1),见解析;(2)或.
    【解析】
    (1)通过等角转换,可得出三角相等,即可判定;
    (2)首先根据已知条件求出DQ,由三角形相似的性质,列出方程,即可得解,注意分两种情况讨论.
    【详解】
    (1)
    根据已知条件,得∠DAQ=∠PED=90°
    又∵∠ADQ+∠PDE=∠DPE+∠PDE=90°
    ∴∠ADQ =∠DPE,∠AQD=∠PDE

    (2)由已知条件,得
    设DE为


    ∴PE为

    ∴分两种情况:


    解得



    解得
    此题主要考查三角形相似的性质,熟练掌握,即可解题.
    16、(1)时,四边形是平行四边形;(2)见解析;(3)见解析.
    【解析】
    (1)当AC∥DE时,因为AC=DE,推出四边形ACDE是平行四边形,利用平行四边形的性质即可解决问题.
    (2)如图2中,作DM⊥FM于M,BN⊥FM交FM的延长线于N.利用全等三角形的性质证明BN=DM,再证明△BNG≌△DMG(AAS)即可解决问题.
    (3)如图3中,延长CM到K,使得MK=CM,连接AK.KM.想办法证明△BCD≌△CAK(SAS),即可解决问题.
    【详解】
    (1)解:如图1-1中,连接AE.
    当AC∥DE时,∵AC=DE,
    ∴四边形ACDE是平行四边形,
    ∴∠ACE=∠CED,
    ∵CE=CD,∠ECD=90°,
    ∴∠CED=1°,
    ∴α=∠ACE=1°.
    故答案为1.
    (2)证明:如图2中,作DM⊥FM于M,BN⊥FM交FM的延长线于N.
    ∵CF⊥AE,DM⊥FM,
    ∴∠CFE=∠CMD=∠ECD=90°,
    ∴∠ECF+∠CEF=90°,∠ECF+∠DCM=90°,
    ∴∠CEF=∠DCM,∵CE=CD,
    ∴△CFE≌△DMC(AAS),
    ∴DM=CF,
    同法可证:CF=BN,
    ∴BN=DM,
    ∵BN⊥FM,
    ∴∠N=∠DMG=90°,
    ∵∠BGN=∠DGM,
    ∴△BNG≌△DMG(AAS),
    ∴BG=DG,
    ∴点G是BD的中点.
    (3)证明:如图3中,延长CM到K,使得MK=CM,连接AK.KM.
    ∵AM-ME,CM=MK,
    ∴四边形ACEK是平行四边形,
    ∴AK=CE=CD,AK∥CE,
    ∴∠KAC+∠ACE=180°,
    ∵∠ACE+∠BCD=180°,
    ∴∠BCD=∠KAC,
    ∵CA=CB,CD=AK,
    ∴△BCD≌△CAK(SAS),
    ∵∠ACK=∠CBD,
    ∵∠ACK+∠BCN=90°,
    ∴∠CBD+∠BCN=90°,
    ∴∠CNB=90°,
    ∴CN⊥BD.
    本题属于四边形综合题,考查了等腰直角三角形的性质,平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题
    17、(1)证明见解析(2)2
    【解析】
    试题分析:根据正方形的性质得到AD=AB,∠B=∠D=90°,根据折叠的性质可得AD=AF,∠AFE=∠D=90°,从而得到∠AFG=∠B=90°,AB=AF,结合AG=AG得到三角形全等;根据全等得到BG=FG,设BG=FG=x,则CG=6-x,根据E为中点得到CE=EF=DE=3,则EG=3+x,根据Rt△ECG的勾股定理得出x的值.
    试题解析:(1)、∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB,由折叠的性质可知
    AD=AF,∠AFE=∠D=90°, ∴∠AFG=90°,AB=AF, ∴∠AFG=∠B, 又AG=AG, ∴△ABG≌△AFG;
    (2)、∵△ABG≌△AFG, ∴BG=FG, 设BG=FG=,则GC=, ∵E为CD的中点,
    ∴CE=EF=DE=3, ∴EG=, ∴, 解得, ∴BG=2.
    考点:正方形的性质、三角形全等、勾股定理.
    18、(1);(2)①,;②是,理由见解析
    【解析】
    (1)根据直角三角形、等腰三角形的性质,判断出△DBC是等边三角形,即可得到结论;
    (2)①根据线段的和差即可得到结论;
    ②根据方程的解得定义,判断AD是方程的解,则当AD=BE时,同时是方程的解,即可得到结论.
    【详解】
    解:(1)∵,

    又,
    是等边三角形.

    (2)①∵
    又,

    ②∵
    ∴线段的长是方程的一个根.
    若与的长同时是方程的根,则,
    即,


    ∴当时,与的长同时是方程的根.
    本题考查了勾股定理,一元二次方程的解;熟练掌握直角三角形和等腰三角形的性质求边与角的方法,掌握判断一元二次方程的解得方法是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、等腰直角
    【解析】
    根据等腰三角形和直角三角形的性质以及判定定理进行判断即可.
    【详解】

    ∴是等腰三角形

    ∴是直角三角形
    ∴该三角形是等腰直角三角形
    故答案为:等腰直角.
    本题考查了等腰三角形和直角三角形的证明问题,掌握等腰三角形和直角三角形的性质以及判定定理是解题的关键.
    20、13.5
    【解析】
    从图形中可得前6分钟只进水,此时可计算出进水管的速度,从第6分到第15分既进水又出水,且进水速度大于出水速度, 根据此时进水的速度=进水管的速度-出水管的速度即可计算出出水管的出水速度,即可解答
    【详解】
    从图形可以看出
    进水管的速度为:60÷6=10(升/分),
    出水管的速度为:10-(90-60)÷(15-6)= (升/分),
    关闭进水管后,放水经过的时间为:90÷=13.5(分).
    此题考查一次函数的应用,函数图象,解题关键在于看懂图象中的数据
    21、1
    【解析】
    先解不等式组得到-1<x≤3,再找出此范围内的整数,然后求这些整数的积即可.
    【详解】
    由1-2x<3,得:x>-1,
    由 ≤2,得:x≤3,
    所以不等式组的解集为:-1<x≤3,
    它的整数解为1、1、2、3,
    所有整数解的积是1.
    故答案为1.
    此题考查了一元一次不等式组的整数解.解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
    22、乙.
    【解析】
    方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.
    【详解】
    解:∵S甲2=1.61>S乙2=1.51,∴成绩较稳定的是是乙.
    本题考查方差的意义.方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.
    23、7
    【解析】
    根据平方差公式展开,再开出即可;
    【详解】
    =
    =
    =7.
    故答案为7.
    本题考查了二次根式的化简,主要考查学生的计算和化简能力,题目比较好,难度适中.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)2.
    【解析】
    试题分析:(1)证明:过C点作CH⊥BF于H点
    ∵∠CFB=45°
    ∴CH=HF
    ∵∠ABG+∠BAG=90°, ∠FBE+∠ABG=90°
    ∴∠BAG=∠FBE
    ∵AG⊥BF CH⊥BF
    ∴∠AGB=∠BHC=90°
    在△AGB和△BHC中
    ∵∠AGB=∠BHC,∠BAG=∠HBC, AB=BC
    ∴△AGB≌△BHC
    ∴AG=BH, BG=CH
    ∵BH=BG+GH
    ∴BH=HF+GH=FG
    ∴AG=FG
    (2) ∵CH⊥GF∴CH∥GM∵C为FM的中点
    ∴CH=GM∴BG=GM∵BM=10
    ∴BG=, GM=(1分)∴AG=AB=10
    ∴HF=∴CF=×∴CM=
    过B点作BK⊥CM于K
    ∵CK==, ∴BK=
    过D作DQ⊥MF交MF延长线于Q
    ∴△BKC≌△CQD
    ∴CQ=BK=
    DQ=CK=∴QF=-=∴DF==
    考点:三角形和正方形
    点评:本题考查三角形和正方形的知识,解本题的关键是熟练掌握三角形和正方形的一些性质,此题难度较大
    25、(1)80,0.100;(2)见解析;(3)1.
    【解析】
    (1)总人数乘以0.2,即可得到a,40除以总人数,即可得到b;
    (2)根据(1)中的计算结果和表中信息,补全频数分布直方图,即可;
    (3)学校总人数×周人均阅读时间不少于6小时的学生的百分比,即可求解.
    【详解】
    (1)a=400×0.200=80,b=40÷400=0.100;
    故答案为:80,0.100;
    (2)补全频数分布直方图,如图所示:
    (3)1600×=1(人),
    答:该校学生周人均阅读时间不少于6小时的学生大约有1人,
    故答案为:1.
    本题主要考查频数分布直方图、频数分布表,掌握频数分布直方图、频数分布表的特征,把它们的数据结合起来,是解题的关键.
    26、
    【解析】
    过F作FH垂直于AB,得到∠FHB为直角,进而求出∠EFD的度数为30°,利用30°角所对的直角边等于斜边的一半求出EF的长,再利用勾股定理求出DF的长,由EF与AD平行,得到内错角相等,确定出∠FDA为30°,再利用30°角所对的直角边等于斜边的一半求出FH的长,进而利用勾股定理求出DH的长,由DH-BH求出BD的长即可.
    【详解】
    解:过点F作FH⊥AB于点H,
    ∴∠FHB=90°,
    ∵∠EDF=90°,∠E=60°,
    ∴∠EFD=90°-60°=30°,
    ∴EF=2DE=24,
    ∴,
    ∵EF∥AD,
    ∴∠FDA=∠DFE=30°,
    ∴,
    ∴,
    ∵△ABC为等腰直角三角形,
    ∴∠ABC=45°,
    ∴∠HFB=90°-45°=45°,
    ∴∠ABC=∠HFB,
    ∴,
    则BD=DH-BH=.
    此题考查了勾股定理,以及平行线的性质,熟练掌握勾股定理是解本题的关键.
    题号





    总分
    得分
    周人均阅读时间x
    (小时)
    频数
    频率
    0≤x<2
    10
    0.025
    2≤x<4
    60
    0.150
    4≤x<6
    a
    0.200
    6≤x<8
    110
    0.275
    8≤x<10
    100
    0.250
    10≤x<12
    40
    b
    合计
    400
    1.000

    相关试卷

    广东惠州市惠阳区2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】:

    这是一份广东惠州市惠阳区2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届广东省惠州惠城区五校联考数学九年级第一学期开学复习检测试题【含答案】:

    这是一份2025届广东省惠州惠城区五校联考数学九年级第一学期开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省惠州惠阳区六校联考2023-2024学年数学九年级第一学期期末复习检测模拟试题含答案:

    这是一份广东省惠州惠阳区六校联考2023-2024学年数学九年级第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了对于二次函数y=2等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map