![广东省江门市蓬江区2024年九年级数学第一学期开学复习检测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16267077/0-1729298263349/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省江门市蓬江区2024年九年级数学第一学期开学复习检测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16267077/0-1729298263389/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省江门市蓬江区2024年九年级数学第一学期开学复习检测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16267077/0-1729298263409/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广东省江门市蓬江区2024年九年级数学第一学期开学复习检测试题【含答案】
展开
这是一份广东省江门市蓬江区2024年九年级数学第一学期开学复习检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,有一个平行四边形和一个正方形,其中点在边上.若,,则的度数为( )
A.55ºB.60ºC.65ºD.75º
2、(4分)若关于x的分式方程无解,则a的值为( )
A.B.2C.或2D.或﹣2
3、(4分)若代数式在实数范围内有意义,则x的取值范围是( )
A.x≥﹣2B.x>﹣2C.x≥2D.x≤2
4、(4分)样本方差的计算公式中,数字30和20分别表示样本的( )
A.众数、中位数B.方差、标准差C.数据的个数、中位数D.数据的个数、平均数
5、(4分)某地区连续10天的最高气温统计如下表,则该地区这10天最高气温的中位数是( )
A.B.C.D.
6、(4分)下列说法错误的是( )
A.当时,分式有意义B.当时,分式无意义
C.不论取何值,分式都有意义D.当时,分式的值为0
7、(4分)能判定四边形ABCD是平行四边形的是( )
A.AD//BC,AB=CDB.∠A=∠B,∠C=∠D
C.∠A=∠C,∠B=∠DD.AB=AD,CB=CD
8、(4分)式子有意义,则x的取值范围是( )
A.x>1B.x<1C.x≥1D.x≤1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为 .
10、(4分)如图,矩形ABCD中,,,CE是的平分线与边AB的交点,则BE的长为______.
11、(4分)已知,则的值是_______.
12、(4分)已知一组数据1,a,3,6,7,它的平均数是4,这组数据的方差是_____.
13、(4分)一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某市联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.
(1)分别表示出y1与x,y2与x的函数关系式.
(2)月通话时间为多长时,A,B两种套餐收费一样?
(3)什么情况下A套餐更省钱?
15、(8分)社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.
(1)求通道的宽是多少米?
(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?
16、(8分)先化简,再求值:,其中x是的整数部分.
17、(10分)如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF,
(1)求证:AE=CE;
(2)求证:四边形ABDF是平行四边形;
(3)若AB=2,AF=4,∠F=30°,则四边形ABCF的面积为 .
18、(10分)已知x=,y=,求下列各式的值:
(1)x2-xy+y2;
(2).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)李老师到超市买了xkg香蕉,花费m元钱;ykg苹果,花费n元钱.若李老师要买3kg香蕉和2kg苹果共需花费_____元.
20、(4分)某商场品牌手机经过5、6月份连续两次降价,每部售价由5000元降到4050元,设平均每次降价的百分率为x,根据题意可列方程:_____.
21、(4分)将点先向左平移6个单位,再向下平移4个单位得到点,则的坐标是__.
22、(4分)的小数部分为_________.
23、(4分)如图,矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则BC=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算
(1)()-()
(2)(2+3)(2-3)
25、(10分)解方程:
(1) (2)
26、(12分)如图①,在平面直角坐标系中,直线y=−12x+2与交坐标轴于A,B两点.以AB为斜边在第一象限作等腰直角三角形ABC,C为直角顶点,连接OC.
(1)求线段AB的长度
(2)求直线BC的解析式;
(3)如图②,将线段AB绕B点沿顺时针方向旋转至BD,且,直线DO交直线y=x+3于P点,求P点坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
首先根据,结合已知可得的度数,进而计算的度数.
【详解】
解:根据平角的性质可得
又四边形为正方形
在三角形DEC中
四边形为平行四边形
故选D.
本题主要考查平角的性质和三角形的内角定理,这些是基本知识,必须熟练掌握.
2、D
【解析】
分式方程去分母转化为整式方程,由分式方程无解确定出a的值即可.
【详解】
解:去分母得:2x+2a+ax﹣2a=1,
整理得:(a+2)x=1,
由分式方程无解,得到a+2=0或x==2,
解得:a=﹣2或a=﹣,
故选:D.
此题考查了分式方程的解,始终注意分母不为0这个条件.
3、C
【解析】
根据二次根式的性质,被开方数大于等于0,就可以求解.
【详解】
解:根据题意得:x﹣1≥0,
解得:x≥1.
故选:C.
本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.
4、D
【解析】
【分析】方差公式中,n、 分别表示数据的个数、平均数.
【详解】样本方差的计算公式中,数字30和20分别表示样本的数据的个数、平均数.
故选:D
【点睛】本题考核知识点:方差.解题关键点:理解方差公式的意义.
5、B
【解析】
求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
【详解】
把这些数从小到大为:18℃,19℃,19℃,20℃,20℃,21℃,21℃,21℃,22℃,22℃,
则中位数是: =20.5℃;
故选B.
考查中位数问题,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
6、C
【解析】
分母不为0时,分式有意义,分母为0时,分式无意义,分子等于0,分母不为0时分式值为0,由此判断即可.
【详解】
解:A选项当,即时,分式有意义,故A正确;
B选项当,即时,分式无意义,故B正确;
C选项当,即时,分式有意义,故C错误;
D选项当,且即时,分式的值为0,故D正确.
故选C.
本题主要考查了分式有意义、无意义、值为0的条件,熟练掌握分式的分母不为0是确定分式有意义的关键.
7、C
【解析】
根据平行四边形的判定定理依次确定即可.
【详解】
A. AD//BC,AB=CD,不能判定四边形ABCD是平行四边形,故不符合题意;
B. ∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故不符合题意;
C. ∠A=∠C,∠B=∠D,能判定四边形ABCD是平行四边形,故符合题意;
D. AB=AD,CB=CD,不能判定四边形ABCD是平行四边形,故不符合题意;
故选:C.
此题考查平行四边形的判定定理,熟记定理内容即可正确解答.
8、C
【解析】
试题分析:由二次根式的概念可知被开方数为非负数,由此有x-1≥0,所以x≥1,C正确
考点:二次根式有意义的条件
二、填空题(本大题共5个小题,每小题4分,共20分)
9、105°或45°
【解析】
试题分析:如图当点E在BD右侧时,求出∠EBD,∠DBC即可解决问题,当点E在BD左侧时,求出∠DBE′即可解决问题.如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,
∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,
当点E′在BD左侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,
考点:(1)、菱形的性质;(2)、等腰三角形的性质
10、
【解析】
分析:作于由≌,推出,,,设,则,在中,根据,构建方程求出x即可;
详解:作于H.
四边形ABCD是矩形,
,
,
在和中,
,
≌,
,,,设,则,
在中,,
,
,
,
故答案为:.
点睛:本题考查矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
11、
【解析】
先对原式进行化简,然后代入a,b的值计算即可.
【详解】
,
.
,
,
∴原式= ,
故答案为:.
本题主要考查二次根式的运算,掌握完全平方公式和平方差是解题的关键.
12、
【解析】
根据平均数确定出a后,再根据方差的公式S2=[(x1-)2+(x2-)2+…+(xn-)2]计算方差.
【详解】
解:由平均数的公式得:(1+a+3+6+7)÷5=4,
解得a=3;
∴方差=[(1-4)2+(3-4)2+(3-4)2+(6-4)2+(7-4)2]÷5=.
故答案为.
此题考查了平均数和方差的定义.平均数是所有数据的和除以所有数据的个数.方差的公式S2=[(x1-)2+(x2-)2+…+(xn-)2].
13、22.1
【解析】∵一组数据:25,29,20,x,11,它的中位数是21,所以x=21,
∴这组数据为11,20,21,25,29,
∴平均数=(11+20+21+25+29)÷5=22.1.
故答案是:22.1.
【点睛】找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
三、解答题(本大题共5个小题,共48分)
14、 (1) y1=1.1x+15; y2=1.15x;(2)311;(3) 当月通话时间多于311分钟时,A套餐更省钱.
【解析】
试题分析:(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;(2)根据两种收费相同列出方程,求解即可;(3)根据(2)的计算结果,小于收费相同时的时间选择B套餐,大于收费相同的时间选择A.
试题解析:解:(1)A套餐的收费方式:y1=1.1x+15;
B套餐的收费方式:y2=1.15x;
(2)由1.1x+15=1.15x,得到x=311,
答:当月通话时间是311分钟时,A、B两种套餐收费一样;
(3)当月通话时间多于311分钟时,A套餐更省钱.
考点:一次函数的应用.
15、(1)6;(2)40或400
【解析】
(1)设通道的宽x米,由图中所示可得通道面积为2×28x+2(52-2x)x,根据铺花砖的面积+通道面积=总面积列方程即可得答案;(2)设每个车位的月租金上涨a元,则少租出个车位,根据月租金收入为14400元列方程求出a值即可.
【详解】
(1)设通道的宽x米,根据题意得:2×28x+2(52-2x)x+640=52×28,
整理得:x2-40x+204=0,
解得:x1=6,x2=34(不符合题意,舍去).
答:通道的宽是6米.
(2)设每个车位的月租金上涨a元,则少租出个车位,
根据题意得:(200+a)(64-)=14400,
整理得:a2-440a+16000=0,
解得:a1=40,a2=400.
答:每个车位的月租金上涨40元或400元时,停车场的月租金收入为14400元.
本题考查一元二次方程的实际应用,读懂题意,找出题中的等量关系列出方程是解题关键.
16、,
【解析】
原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出x的值代入计算即可求出值.
【详解】
解:原式=
∵x是的整数部分,∴x=2.
当x=2时, .
本题考查分式的化简求值,熟练掌握运算法则是解题关键.
17、(1)见解析;(2)见解析;(3)1
【解析】
(1)根据平行线的性质得出,根据全等三角形的判定得出,根据全等三角形的性质得出即可;
(2)根据平行四边形的判定推出即可;
(3)求出高和,再根据面积公式求出即可.
【详解】
解:(1)证明:∵点E是BD的中点,
∴BE=DE,
∵AD∥BC,
∴∠ADE=∠CBE,
在△ADE和△CBE中
∴△ADE≌△CBE(ASA),
∴AE=CE;
(2)证明:∵AE=CE,BE=DE,
∴四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵DF=CD,
∴DF=AB,
即DF=AB,DF∥AB,
∴四边形ABDF是平行四边形;
(3)解:过C作CH⊥BD于H,过D作DQ⊥AF于Q,
∵四边形ABCD和四边形ABDF是平行四边形,AB=2,AF=4,∠F=30°,
∴DF=AB=2,CD=AB=2,BD=AF=4,BD∥AF,
∴∠BDC=∠F=30°,
∴DQ=DF==1,CH=DC==1,
∴四边形ABCF的面积S=S平行四边形BDFA+S△BDC=AF×DQ+=4×1+=1,
故答案为:1.
本题考查了平行四边形的性质和判定,三角形的面积等知识点,能综合运用定理进行推理是解此题的关键.
18、(1) ;(2) 12.
【解析】
试题分析: 由x=,y=,得出x+y=,xy=,由此进一步整理代数式,整体代入求得答案即可.
试题解析:
(1)∵x=,y=,
∴x+y=,xy=,
∴x2-xy+y2=(x+y)2-3xy=7-=;
(2)===12.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据题意可以列出相应的代数式,本题得以解决.
【详解】
由题意可得:李老师要买3kg香蕉和2kg苹果共需花费:()(元).
故答案为.
本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.
20、5000(1﹣x)2=1
【解析】
根据现在售价5000元月平均下降率现在价格1元,即可列出方程.
【详解】
解:设平均每次降价的百分率为x,根据题意可列方程:
5000(1﹣x)2=1.
故答案为:5000(1﹣x)2=1.
此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.
21、
【解析】
根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.
【详解】
解:将点A(4,3)先向左平移6个单位,再向下平移4个单位得到点A1,则A1的坐标是(4-6,3-4),即(-2,-1),
故答案为:(-2,-1).
本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.
22、﹣1.
【解析】
解:∵<<,∴1<<5,∴的整数部分是1,∴的小数部分是﹣1.故答案为﹣1.
23、2
【解析】
根据题意推出AB=AB1=2,由AE=CE推出AB1=B1C,即AC=4,然后依据勾股定理可求得BC的长.
【详解】
解:∵AB=2cm,AB=AB1
∴AB1=2cm,
∵四边形ABCD是矩形,AE=CE,
∴∠ABE=∠AB1E=90°
∵AE=CE,
∴AB1=B1C,
∴AC=4cm.
在Rt△ABC中,BC= .
故答案为:2cm.
本题主要考查翻折的性质、矩形的性质、等腰三角形的性质,解题的关键在于推出AB=AB1.
二、解答题(本大题共3个小题,共30分)
24、 (1) ;(2)-1.
【解析】
(1)先把二次根式化为最简二次根式,然后合并即可;
(2)利用平方差公式计算.
【详解】
(1)原式=
=;
(2)原式=8-9=-1.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
25、(1),;(2),.
【解析】
(1)先移项,然后根据两边同时开方进行计算;(2)用十字相乘直接计算即可;
【详解】
解:(1),
,
即或,
,;
(2),
或,
,.
本题主要考查一元二次方程的求解,熟练掌握十字相乘和直接开方法是解决本题的关键.
26、(1);(2);(3)P点的坐标是.
【解析】
(1)先确定出点A,B坐标,利用勾股定理计算即可;
(2)如图1中,作CE⊥x轴于E,作CF⊥y轴于F,进而判断出,即可判断出四边形OECF是正方形,求出点C坐标即可解决问题.
(3)如图2中,先判断出点B是AM的中点,进而求出M的坐标,即可求出DP的解析式,联立成方程组求解即可得出结论.
【详解】
解:(1)∵直线交坐标轴于A、B两点.
∴令,,∴B点的坐标是,
,
令,,∴A点的坐标是,
,
根据勾股定理得:.
(2)如图,作CE⊥x轴于E,作CF⊥y轴于F,
∴四边形OECF是矩形.
∵是等腰直角三角形,
,,,
,
,,.
∴四边形OECF是正方形,
,
,,.
∴C点坐标
设直线BC的解析式为:,
∴将、代入得:,
解得:,.
∴直线BC的解析式为:.
(3)延长AB交DP于M,
由旋转知,BD=AB,
∴∠BAD=∠BDA,
∵AD⊥DP,
∴∠ADP=90°,
∴∠BDA+∠BDM=90°,∠BAD+∠AMD=90°,
∴∠AMD=∠BDM,
∴BD=BM,
∴BM=AB,
∴点B是AM的中点,
∵A(4,0),B(0,2),
∴M(−4,4),
∴直线DP的解析式为y=−x,
∵直线DO交直线y=x+3于P点,
将直线与联立得:
解得:
∴P点的坐标是.
此题是一次函数综合题,主要考查了待定系数法求函数解析式,一次函数的图像和性质,全等三角形的判定和性质,等腰三角形的判定和性质等,解(2)的关键是求出点C的坐标,解(3)的关键是证明点B是AM的中点,求出直线DP的解析式.
题号
一
二
三
四
五
总分
得分
批阅人
最高气温()
18
19
20
21
22
天数
1
2
2
3
2
相关试卷
这是一份2025届广东省江门市蓬江区荷塘中学九上数学开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省江门市数学九年级第一学期开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省江门市蓬江区荷塘中学2023-2024学年数学九年级第一学期期末教学质量检测试题含答案,共8页。试卷主要包含了在平面直角坐标系中,将点A,如图,的正切值为等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)