广东省揭阳市空港经济区2024-2025学年九上数学开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各点中在函数y=2x+2的图象上的是( )
A.(1,-2)B.(-1,-1)C.(0,2)D.(2,0)
2、(4分)如图,在△ABC中,∠C=90∘,∠A=30∘,CD=2,AB的垂直平分线MN交AC于D,连接BD,则AC的长是( )
A.4B.3C.6D.5
3、(4分)如图,在△ABC中,∠B=90°,以A为圆心,AE长为半径画弧,分别交AB、AC于F、E两点;分别以点E和点F为圆心,大于EF且相等的长为半径画弧,两弧相交于点G,作射线AG,交BC于点D,若BD=,AC长是分式方程的解,则△ACD的面积是( )
A.B.C.4D.3
4、(4分)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为( )
A.3:1B.4:1C.5:1D.6:1
5、(4分)在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M的坐标为,N的坐标为,则在第二象限内的点是( )
A.A点B.B点C.C点D.D
6、(4分)点A(m+4,m)在平面直角坐标系的x轴上,则点A关于y轴对称点的坐标为( )
A.B.C.D.
7、(4分)A、B两点在一次函数图象上的位置如图所示,两点的坐标分别是,,下列结论正确的是
A.B.C.D.
8、(4分)下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )
A.1,2,3B.4,6,8C.6,8,10D.13,14,15
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)命题“在中,如果,那么是等边三角形”的逆命题是_____.
10、(4分)一个多边形的内角和与外角和的比是4:1,则它的边数是 .
11、(4分)面积为的矩形,若宽为,则长为___.
12、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a>0的解集是_______
13、(4分)若,则________.
三、解答题(本大题共5个小题,共48分)
14、(12分)甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:
根据以上信息,请解答下面的问题;
(1)补全甲选手10次成绩频数分布图.
(2)a= ,b= ,c= .
(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).
15、(8分)如图,正方形的边长为6,菱形的三个顶点,,分别在正方形的边,,上,且,连接.
(1)当时,求证:菱形为正方形;
(2)设,试用含的代数式表示的面积.
16、(8分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.
(1)求反比例函数的解析式;
(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:
①四个顶点均在格点上,且其中两个顶点分别是点O,点P;
②矩形的面积等于k的值.
17、(10分)一次函数分别交x轴、y轴于点A、B,画图并求线段AB的长.
18、(10分)分解因式:
(1);
(2)。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知关于x的一次函数y=(3a-7)x+a-2的图像与y轴的交点在x轴的上方,且y随x的增大而减小,则a的取值范围为__________.
20、(4分)若ab=﹣2,a+b=1,则代数式a2b+ab2的值等于_____.
21、(4分)如图,在直角坐标系中,有菱形OABC,A点的坐标是(5,0),双曲线经过点C,且OB•AC=40,则k的值为_________ .
22、(4分)下表是某校女子羽毛球队队员的年龄分布:
则该校女子排球队队员年龄的中位数为__________岁.
23、(4分)某日,王艳骑自行车到位于家正东方向的演奏厅听音乐会.王艳离家5分钟后自行车出现故障而且发现没有带钱包,王艳立即打电话通知在家看报纸的爸爸骑自行车赶来送钱包(王艳打电话和爸爸准备出门的时间忽略不计),同时王艳以原来一半的速度推着自行车继续走向演奏厅.爸爸接到电话后,立刻出发追赶王艳,追上王艳的同时,王艳坐上出租车并以爸爸速度的2倍赶往演奏厅(王艳打车和爸爸将钱包给王艳的时间忽略不计),同时爸爸立刻掉头以原速赶到位于家正西方3900米的公司上班,最后王艳比爸爸早到达目地的.在整个过程中,王艳和爸爸保持匀速行驶.如图是王艳与爸爸之间的距离y(米)与王艳出发时间x(分钟)之间的函数图象,则王艳到达演奏厅时,爸爸距离公司_____米.
二、解答题(本大题共3个小题,共30分)
24、(8分)为引导学生广泛阅读古今文学名著,某校开展了读书活动.学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:
学生平均每周阅读时间频数分布表
请根据以上信息,解答下列问题;
(1)在频数分布表中,a=______,b=______;
(2)补全频数分布直方图;
(3)如果该校有1600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有多少人?
25、(10分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.
(1)求证:四边形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面积是 .
26、(12分)现在我们国家进入了高速发展的新时代,以为首的党中央在注重发展的同时,也提出了绿色中国的发展理念,请你以等腰三角形为基本图形利用平移或旋转设计一个宣传环保的图案,并加上简单的解说词.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
把选项中的点的坐标分别代入函数解析式进行判断即可.
【详解】
A. 当x=1时,y=2×1+2=4≠-2,故点(1,-2)不在函数图象上;
B. 当x=-1时,y=2×(-1)+2=0≠-1,故点(-1,-1)不在函数图象上;
C. 当x=0时,y=2×0+2=2,故点(0,2)在函数图象上;
D. 当x=2时,y=2×2+2=6≠0,故点(2,0)不在函数图象上;
故选C.
此题考查一次函数图象上点的坐标特征,解题关键在于把坐标代入解析式.
2、C
【解析】
由MN是AB的垂直平分线,即可得AD=BD,根据等腰三角形的性质,即可求得∠DBA的度数,又由直角三角形的性质,求得∠CBD=∠ABD=30°,然后根据角平分线的性质,求得DN的值,继而求得AD的值,则可求得答案.
【详解】
∵MN是AB的垂直平分线,
∴AD=BD,DN⊥AB,
∴∠DBA=∠A=30°,
∵∠C=90°,
∴∠ABC=90°−∠A=60°,
∴∠CBD=∠ABD=30°,
∴DN=CD=2,
∴AD=2DN=4,
∴AC=AD+CD=6.
故选:C.
此题考查线段垂直平分线的性质,含30度角的直角三角形,解题关键在于求得∠DBA
3、A
【解析】
利用角平分线的性质定理证明DB=DH=,再根据三角形的面积公式计算即可
【详解】
如图,作DH⊥AC于H,
∵
∴5(x-2)=3x
∴x=5
经检验:x=5是分式方程的解
∵AC长是分式方程的解
∴AC=5
∵∠B=90°
∴DB⊥AB,DH⊥AC
∵AD平分∠BAC,
∴DH=DB=
S=
故选A
此题考查角平分线的性质定理和三角形面积,解题关键在于做辅助线
4、C
【解析】
菱形的性质;含30度角的直角三角形的性质.
【详解】
如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1,故选C.
5、D
【解析】
根据点的坐标特征,可得答案.
【详解】
MN所在的直线是x轴,MN的垂直平分线是y轴,A在x轴的上方,y轴的左边,A点在第二象限内.
故选A.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
6、A
【解析】
解:∵点A(m+4,m)在平角直角坐标系的x轴上,∴m=0,∴点A(4,0),∴点A关于y轴对称点的坐标为(-4,0).故选A.
7、B
【解析】
根据函数的图象可知:y随x的增大而增大,y+b
∵根据函数的图象可知:y随x的增大而增大,
∴y+b
∴选项A. C. D都不对,只有选项B正确,
故选B.
8、C
【解析】
判断是否为直角三角形,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A、12+22=5≠32,故不能组成直角三角形,错误;
B、42+62≠82,故不能组成直角三角形,错误;
C、62+82=102,故能组成直角三角形,正确;
D、132+142≠152,故不能组成直角三角形,错误.
故选:C.
考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、如果是等边三角形,那么.
【解析】
把原命题的题设与结论进行交换即可.
【详解】
“在中,如果,那么是等边三角形”的逆命题是“如果是等边三角形,那么”.
故答案为:如果是等边三角形,那么.
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
10、1.
【解析】
多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
【详解】
解:根据题意,得
(n﹣2)•180=4360,
解得:n=1.
则此多边形的边数是1.
故答案为1.
11、2
【解析】
根据矩形的面积公式列式计算即可.
【详解】
解:由题意,可知该矩形的长为:÷==2.
故答案为2
本题考查了二次根式的应用,掌握矩形的面积公式以及二次根式的除法法则是解题的关键.
12、-3
kx+b>x+a>0的解集是一次函数y1=kx+b在y2=x+a的图象的上边部分,且在x轴上方部分,对应的x的取值范围,据此即可解答.
【详解】
解:观察图像可得:kx+b>x+a>0的解集是-3
13、
【解析】
由,得到a=b,代入所求的代数式,即可解决问题.
【详解】
∵,
∴a=b,
∴,
故答案为:.
该题主要考查了分式的化简与求值问题;解题的关键是将所给的条件或所要计算、求值的代数式,灵活变形、合理运算,求值.
三、解答题(本大题共5个小题,共48分)
14、(1)4;(2)8、1.2、7.5;(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
【解析】
(1)根据甲的成绩频数分布图及题意列出10﹣(1+2+2+1),计算即可得到答案;
(2)根据平均数公式、中位数的求法和方差公式计算得到答案;
(3)从平均数和方差进行分析即可得到答案.
【详解】
解:(1)甲选手命中8环的次数为10﹣(1+2+2+1)=4,
补全图形如下:
(2)a==8(环),
c=×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2,
b==7.5,
故答案为:8、1.2、7.5;
(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
本题考查频数分布直方图、平均数、中位数和方差,解题的关键是读懂频数分布直方图,掌握平均数、中位数和方差的求法.
15、(1)见解析;(2).
【解析】
(1)根据已知条件可证明,再通过等量代换即可得出,继而证明结论;
(2)过点作,交的延长线于点,连接,再证明,得出,进而可求得答案.
【详解】
解:(1)∵四边形是正方形,
∴,
∵四边形是菱形,
∴.
∵,
∴
∴,
∴
∴,
∴菱形为正方形.
(2)如图,过点作,交的延长线于点,连接,
∵,∴,
∵,∴
∴
在和中,
∴
∴
∵,∴
∴
本题考查了正方形的性质、菱形的判定及性质、勾股定理,会利用数形结合的思想解题,能够正确的作出辅助项是解此题的关键.
16、(1);(2)作图见解析.
【解析】
分析:(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;
(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.
详解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),
∴k=2×2=4,
∴反比例函数的解析式为y=;
(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.
点睛:本题考查了作图-应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.
17、AB=.
【解析】
先求A,B的坐标,再画图象,由勾股定理可求解.
【详解】
解:因为当x=0时,y=2;当y=0时,x=1,
所以,与x轴的交点A(1,0),与y轴的交点B(0,2),
所以,线段AB的图象是
所以,AB=
故答案为如图,
本题考核知识点:一次函数的图象. 解题关键点:确定点A,B的坐标,由勾股定理求AB.
18、(1);(2).
【解析】
(1)原式提取公因式,再利用平方差公式分解即可;
(2)原式提取公因式即可.
【详解】
解:(1)原式
(2)原式
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法,正确运用公式是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2<a<.
【解析】
分析:根据已知函数的增减性判定3a-7<1,由该函数图象与y轴交点的位置可得a-2>1.
详解:∵关于x一次函数y=(3a-7)x+a-2的图象与y轴的交点在x轴的上方,且y随着x的增大而减少,
∴,
解得2<a<.
故答案是:2<a<.
点睛:考查了一次函数图象与系数的关系.一次函数y=kx-b(k≠1):函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;
一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b图象过原点⇔b=1.
20、﹣1
【解析】
直接将要求值的代数式提取公因式ab,进而把已知数据代入求出答案.
【详解】
∵ab=-1,a+b=1,
∴a1b+ab1=ab(a+b)
=-1×1
=-1.
故答案为-1.
此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.
21、12
【解析】
过点C作于D,根据A点坐标求出菱形的边长,再根据菱形的面积求得CD,然后利用勾股定理求得OD,从而得到C点坐标,代入函数解析式中求解.
【详解】
如图,过点C作于D,
∵点A的坐标为(5,0),
∴菱形的边长为OA=5,,,
∴ ,解得,
在中,根据勾股定理可得: ,
∴点C的坐标为(3,4),
∵双曲线经过点C,
∴ ,
故答案为:12.
本题考查了菱形与反比例函数的综合运用,解题的关键在于合理作出辅助线,求得C点的坐标.
22、15.
【解析】
中位数有2种情况,共有2n+1个数据时,从小到大排列后,,中位数应为第n+1个数据,可见,大于中位数与小于中位数的数据都为n个;共有2n+2个数据时,从小到大排列后,中位数为中间两个数据平均值,大小介于这两个数据之间,可见大于中位数与小于中位数的数据都为n+1个,所以这组数据中大于或小于这个中位数的数据各占一半,中位数有一个.
【详解】
解:总数据有5个,中位数是从小到大排,第3个数据为中位数,即15为这组数据的中位数.
故答案为:15
本题考查中位数的定义,解题关键是熟练掌握中位数的计算方法,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
23、1.
【解析】
根据函数图象可知,王艳出发10分钟后,爸爸追上了王艳,根据此时爸爸的5分钟的行程等于王艳前5分钟的行程与后5分钟的行程和,得到爸爸的速度与王艳骑自行车的速度的关系,再根据函数图象可知,爸爸到赶到公司时,公司距离演奏厅的距离为9400米,再根据已知条件,便可求得家与演奏厅的距离,由函数图象又可知,王艳到达演奏厅的时间为秒,据此列出方程,求得王艳的速度与爸爸的速度,进而便可求得结果.
【详解】
解:设王艳骑自行车的速度为xm/min,则爸爸的速度为:
(5x+x)÷5=x(m/min),
由函数图象可知,公司距离演奏厅的距离为9400米,
∵公司位于家正西方3900米,
∴家与演奏厅的距离为:9400﹣3900=5500(米),
根据题意得,5x+5×x+()×=5500,
解得,x=200(m/min),
∴爸爸的速度为:(m/min)
∴王艳到达演奏厅时,爸爸距离公司的距离为:5×300+3900﹣()×300=1(m).
故答案为:1.
本题考查了函数图象与行程问题,解题的关键是将函数图象与实际的行程对应起来,列出方程,解出相关量.
二、解答题(本大题共3个小题,共30分)
24、(1)80,0.1;(2)见详解;(3)1000人
【解析】
(1)求出总人数,总人数乘以0.2即可得到a,110除以总人数即可得到b.
(2)根据(1)中计算和表中信息画图.
(3)根据用样本估计总体的方法求解.
【详解】
解:(1)10÷0.025=400人;
a=400×0.2=80人,b==0.1;
故答案为80,0.1.
(2)如图:
(3)1600×(0.1+0.25+0.1)=1000人.
本题考查了频数分布直方图、频数分布表,两图结合是解题的关键.
25、(1)证明见解析;(2)1.
【解析】
【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
【详解】(1)∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠COD=90°.
∵CE∥OD,DE∥OC,
∴四边形OCED是平行四边形,
又∠COD=90°,
∴平行四边形OCED是矩形;
(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.
∵四边形ABCD是菱形,
∴AC=2OC=1,BD=2OD=2,
∴菱形ABCD的面积为:AC•BD=×1×2=1,
故答案为1.
【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
26、见解析.
【解析】
将等腰三角形依次平移、配上矩形构成一个树木的形状即可.
【详解】
解:如图,爱护身边的每一片绿色,共同构建幸福家园.
此题考查利用旋转、轴对称、平移设计图案,能够把不规则图形的面积转化为规则图形的面积,掌握轴对称变换和旋转变换的特点是解决问题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
选手
A平均数
中位数
众数
方差
甲
a
8
8
c
乙
7.5
b
6和9
2.65
年龄/岁
13
14
15
16
人数
1
1
2
1
平均每周阅读时间x(时)
频数
频率
0≤x<2
10
0.025
2≤x<4
60
0.150
4≤x<6
a
0.200
6≤x<8
110
b
8≤x<10
100
0.250
10≤x≤12
40
0.100
合计
400
1.000
广东省广州市东圃中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份广东省广州市东圃中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年浙江地区九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年浙江地区九上数学开学质量跟踪监视模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省深圳市文锦中学数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年广东省深圳市文锦中学数学九上开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。