广东省揭阳市普宁市2024年数学九上开学质量检测试题【含答案】
展开
这是一份广东省揭阳市普宁市2024年数学九上开学质量检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在▱ABCD中,∠BAD=120°,连接BD,作AE∥BD交CD延长线于点E,过点E作EF⊥BC交BC的延长线于点F,且CF=1,则AB的长是( )
A.2B.1C.D.
2、(4分)在以下列线段a、b、c的长为边的三角形中,不能构成直角三角形的是( )
A.a=9 b=41 c=40B.a=b=5 c=5
C.a:b:c=3:4:5D.a=11 b=12 c=15
3、(4分)将分式中的,的值同时扩大为原来的2019倍,则变化后分式的值( )
A.扩大为原来的2019倍B.缩小为原来的
C.保持不变D.以上都不正确
4、(4分)与可以合并的二次根式是( )
A.B.C.D.
5、(4分)将点P(5,3)向左平移4个单位,再向下平移1个单位后,落在函数y=kx﹣2的图象上,则k的值为( )
A.k=2B.k=4C.k=15D.k=36
6、(4分)已知两圆的半径 R 、r 分别是方程x2-7x+10=0的两根,两圆的圆心距为 7, 则两圆的位置关系是( )
A.外离B.相交C.外切D.内切
7、(4分)要使分式有意义,则的取值范围是( )
A.B.C.D.
8、(4分)下列语句描述的事件中,是不可能事件的是( )
A.只手遮天,偷天换日B.心想事成,万事如意
C.瓜熟蒂落,水到渠成D.水能载舟,亦能覆舟
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简:+=___.
10、(4分)如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=10,BC=16,则EF的长为___________.
11、(4分)如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20+2,那么△DEF的周长是_____.
12、(4分)如图,四边形ABCD是菱形,点A,B,C,D的坐标分别是(m,0),(0,n),(1,0),(0,2),则mn=_____.
13、(4分)解分式方程+=时,设=y,则原方程化为关于y的整式方程是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.
(1)求证:四边形ADCE是平行四边形;
(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.
15、(8分)解分式方程:(1); (2).
16、(8分)如图,在每个小正方形的边长均为的方格纸中,有线段和线段,点、、、均在小正方形的顶点上.
在方格纸中画出以为对角线的正方形,点、在小正方形的顶点上;
在方格纸中画出以为一边的菱形,点、在小正方形的顶点上,且菱形面积为;请直接写出的面积.
17、(10分)为了倡导“节约用水,从我做起”,南沙区政府决定对区直属机关300户家庭的用水情况作一次调查,区政府调查小组随机抽查了其中50户家庭一年的月平均用水量(单位:吨),调查中发现每户用水量均在10﹣14吨/月范围,并将调查结果制成了如图所示的条形统计图.
(1)请将条形统计图补充完整;
(2)这50户家庭月用水量的平均数是 ,众数是 ,中位数是 ;
(3)根据样本数据,估计南沙区直属机关300户家庭中月平均用水量不超过12吨的约有多少户?
18、(10分)甲、乙两名同学在练习打字时发现,甲打1800字的时间与乙打2400字的时间相同.已知乙每分钟比甲多打20个字,求甲每分钟打多少个字
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直线y=x+2与x轴的交点坐标为___________.
20、(4分)如图,正方形的边长为12,点、分别在、上,若,且,则______.
21、(4分)在平面直角坐标系xOy中,已知A(0,1),B(1,0), C(3,1),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是_____________.
22、(4分)不等式的正整数解的和______;
23、(4分)关于x的一元二次方程x2+3x+m﹣2=0有一个根为1,则m的值等于______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,C为线段BE上一点,AB∥DC,AB=EC,BC=CD.
求证:∠A=∠E.
25、(10分)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.
26、(12分)已知一次函数的图象经过点A ,B 两点.
(1)求这个一次函数的解析式;
(2)求一次函数的图像与两坐标轴所围成的三角形的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
证明四边形ABDE是平行四边形,得出AB=DE,证出CE=2AB,求出∠CEF=30°,得出CE=2CF=2,即可得出AB的长.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,∠BCD=∠BAD=120°,
∵AE∥BD,
∴四边形ABDE是平行四边形,
∴AB=DE,
∴CE=2AB,
∵∠BCD=120°,
∴∠ECF=60°,
∵EF⊥BC,
∴∠CEF=30°,
∴CE=2CF=2,
∴AB=1;
故选:B.
本题考查平行四边形的性质与判定、直角三角形的性质;熟练掌握平行四边形的判定与性质是解决问题的关键.
2、D
【解析】
根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.
【详解】
解:A、因为92+402=412,故能构成直角三角形;
B、因为52+52=(5)2,故能构成直角三角形;
C、因为32+42=52,故能构成直角三角形;
D、因为112+122≠152,故不能构成直角三角形;
故选:D.
本题考查的是勾股定理的逆定理,当三角形中三边满足关系时,则三角形为直角三角形.
3、C
【解析】
将分式中的x,y的值同时扩大为原来的2019倍,则x、2x-4y的值都扩大为原来的2019倍,所以根据分式的基本性质可得,变化后分式的值保持不变.
【详解】
解:∵将分式中的x,y的值同时扩大为原来的2019倍,
则,
∴变化后分式的值保持不变.
故选:C.
此题主要考查了分式的基本性质,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
4、C
【解析】
将各选项中的二次根式化简,被开方数是5的根式即为正确答案.
【详解】
解:A.与不是同类二次根式,不可以合并,故本选项错误;
B.与不是同类二次根式,不可以合并,故本选项错误;
C.=2,故与是同类二次根式,故本选项正确;
D.=5,故与不是同类二次根式,故本选项错误.
故选C.
本题考查了同类二次根式的定义,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.
5、B
【解析】
根据点的平移规律,得出平移后的点的坐标,将该点坐标代入y=kx﹣2中求k即可.
【详解】
将点P(5,3)向左平移1个单位,再向下平移1个单位后点的坐标为(1,2),
将点(1,2)代入y=kx﹣2中,得k﹣2=2,
解得k=1.
故选B.
本题考查了一次函数图象上点的坐标特点,点的坐标平移规律.关键是找出平移后点的坐标.
6、C
【解析】
首先解方程x2-7x+10=0,求得两圆半径R 、r的值,又由两圆的圆心距为7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.
【详解】
解:∵x2-7x+10=0,
∴(x-2)(x-5)=0,
∴x1=2,x2=5,
即两圆半径R 、r分别是2,5,
∵2+5=7,两圆的圆心距为7,
∴两圆的位置关系是外切.
故选:C.
本题考查圆与圆的位置关系与一元二次方程的解法,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解题的关键.
7、C
【解析】
根据分式有意义的条件,即可解答.
【详解】
分式有意义的条件是:分母不等于零,a-4≠0,
∴
所以选C.
此题考查分式有意义的条件,解题关键在于掌握其定义.
8、A
【解析】
不可能事件是指在一定条件下,一定不发生的事件.
【详解】
A、是不可能事件,故选项正确;
B、是随机事件,故选项错误;
C、是随机事件,故选项错误;
D、是随机事件,故选项错误.
故选:A.
此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.
解答:解:原式==1.
点评:本题考查了分式的加减运算.最后要注意将结果化为最简分式.
10、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.
【详解】
∵DE为△ABC的中位线,∠AFB=90°,
∴DE=BC,DF=AB,
∵BC=16,AB=10,
∴DE=×16=8,DF=×10=5,
∴EF=DE-DF=8-5=1,
故答案为:1.
本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.
11、10+
【解析】
根据三角形中位线定理得到,,,根据三角形的周长公式计算即可.
【详解】
解:∵△ABC的周长为,
∴AB+AC+BC=,
∵点D、E、F分别是BC、AB、AC的中点,
∴,,,
∴△DEF的周长=DE+EF+DF=(AC+BC+AB)=10+,
故答案为:10+.
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
12、1 .
【解析】
分析:根据菱形的对角线互相垂直平分得出OA=OC,OB=OD,得出m和n的值,从而得出答案.
详解:∵四边形ABCD是菱形, ∴OA=OC,OB=OD, ∴m=-1,n=-1,∴mn=1.
点睛:本题主要考查的是菱形的性质,属于基础题型.根据菱形的性质得出OA=OC,OB=OD是解题的关键.
13、y2-y+1=1
【解析】
根据换元法,可得答案.
【详解】
解:设=y,则原方程化为y+-=1
两边都乘以y,得
y2-y+1=1,
故答案为:y2-y+1=1.
本题考查了解分式方程,利用换元法是解题关键.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
试题分析:
(1)由已知条件易证△AFE≌△DFB,从而可得AE=BD=DC,结合AE∥BC即可证得四边形ADCE是平行四边形;
(2)由(1)可知,AE=BD=CD;由BE平分∠AEC,结合AE∥BC可证得△BCE是等腰三角形,从而可得EC=BC,结合AD=EC、AF=DF,可得AF=DF=AE;由此即可得与AE相等的线段有BD、CD、AF、DF共四条.
试题解析:
(1)∵AE∥BC,
∴∠AEF=∠DBF,∠EAF=∠FDB,
∵点F是AD的中点,
∴AF=DF,
∴△AFE≌△DFB,
∴ AE=CD,
∵AD是△ABC的中线,
∴DC=AD,
∴AE=DC,
又∵AE∥BC,
∴四边形 ADCE是平行四边形;
(2)∵BE平分∠AEC,
∴∠AEB=∠CEB,
∵AE∥BC,
∴∠AEB=∠EBC,
∴∠CEB=∠EBC,
∴EC=BC,
∵由(1)可知,AD=EC,BD=DC=AE,
∴AD=BC,
又∵AF=DF,
∴AF=DF=BD=DC=AE,
即图中等于AE的线段有4条,分别是:AF、DF、BD、DC.
15、(1);(2)原方程无解.
【解析】
(1)先去分母,把分式方程变成整式方程,求出整式方程的解,最后进行检验即可;
(2)先去分母,把分式方程变成整式方程,求出整式方程的解,最后进行检验即可。
【详解】
解:(1)
方程两边都乘,得
解这个方程,得
经检验,是原方程的根.
(2)
解:方程两边都乘,得
解这个方程,得
经检验,是原方程的增根,原方程无解.
本题考查了解分式方程的应用,能把分式方程转化成整式方程是解此题的关键.
16、(1)见解析;(2)见解析
【解析】
(1)根据正方形的性质画出以为对角线的正方形即可;
(2)根据菱形的性质及勾股定理画出菱形即可,由图可得的面积.
【详解】
(1)如图,正方形即为所求;
(2)如图,菱形即为所求..
本题考查的是作图-应用与设计作图,熟知菱形与正方形的性质及勾股定理是解答此题的关键.
17、 (1)补图见解析;(2)11.6,11,11;()210户.
【解析】
试题分析:(1)利用总户数减去其他的即可得出答案,再补全即可;
(2)利用众数,中位数以及平均数的公式进行计算即可;
(3)根据样本中不超过12吨的户数,再估计300户家庭中月平均用水量不超过12吨的户数即可.
解:(1)根据条形图可得出:
平均用水11吨的用户为:50﹣10﹣5﹣10﹣5=20(户),
如图所示:
(2)这50 个样本数据的平均数是 11.6,众数是11,中位数是11;
故答案为;11.6,11,11;
(3)样本中不超过12吨的有10+20+5=35(户),
∴广州市直机关300户家庭中月平均用水量不超过12吨的约有:300×=210(户).
点评:本题考查了读统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了众数、中位数的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
18、60
【解析】
设甲每分钟打x个字,根据“甲打1800字的时间与乙打2400字的时间相同”列出方程,解方程即可求解.
【详解】
解:设甲每分钟打x个字.
根据题意,得 .
解得 .
经检验, 是原方程的解,且符合题意.
答:甲打字的速度是每分钟60个字。
本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(-2,0)
【解析】
令纵坐标为0代入解析式中即可.
【详解】
当y=0时,0=x+2,解得:x=-2,
∴直线y=x+2与x轴的交点坐标为(-2,0).
点睛:本题主要考查了一次函数与坐标轴的交点问题,关键在于理解在x轴上的点的纵坐标为0.
20、
【解析】
首先延长FD到G,使DG=BE,利用正方形的性质得∠B=∠CDF=∠CDG=90°,CB=CD;利用SAS定理得△BCE≌△DCG,利用全等三角形的性质易证△GCF≌△ECF,利用勾股定理可得DF,求出AF,设BE=x,利用GF=EF,解得x,再利用勾股定理可得CE.
【详解】
解:如图,延长FD到G,使DG=BE;
连接CG、EF;
∵四边形ABCD为正方形,
在△BCE与△DCG中,,
∴△BCE≌△DCG(SAS),
∴CG=CE,∠DCG=∠BCE,
∴∠GCF=45°,
在△GCF与△ECF中,,
∴△GCF≌△ECF(SAS),
∴GF=EF,
∵DF=,AB=AD=12,
∴AF=12−4=8,
设BE=x,则AE=12−x,EF=GF=4+x,
在Rt△AEF中,由勾股定理得:(12−x)2+82=(4+x)2,
解得:x=6,
∴BE=6,
∴CE=,
故答案为.
本题主要考查了全等三角形的判定及性质,勾股定理等,构建全等三角形,利用方程思想是解答此题的关键.
21、(-2,0)或(4,0)或(2,2)
【解析】
分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的性质容易得出点D的坐标.
【详解】
解:分三种情况:①AB为对角线时,点D的坐标为(-2,0);
②BC为对角线时,点D的坐标为(4,0);
③AC为对角线时,点D的坐标为(2,2).
综上所述,点D的坐标可能是(-2,0)或(4,0)或(2,2).
故答案为(-2,0)或(4,0)或(2,2).
本题考查平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解题的关键.
22、3.
【解析】
先解出一元一次不等式,然后选取正整数解,再求和即可.
【详解】
解:解得;x<3,;则正整数解有2和1;
所以正整数解的和为3;故答案为3.
本题考查了解一元一次不等式组和正整数的概念,其关键在于选取正整数解.
23、-1
【解析】
方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于m的方程,从而求得m的值.
【详解】
解:将x=1代入方程得:1+3+m﹣1=0,
解得:m=﹣1,
故答案为﹣1.
本题主要考查了方程的解的定义.就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
直接利用全等三角形的判定方法得出△ABC≌△ECD,即可得出答案.
【详解】
证明:∵AB∥DC,
∴∠B=∠ECD,
在△ABC和△ECD中,
,
∴△ABC≌△ECD(SAS),
∴∠A=∠E(全等三角形的对应角相等).
本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
25、见解析
【解析】
由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,又由点E、F分别是▱ABCD边AD、BC的中点,可得DE=BF,继而证得四边形BFDE是平行四边形,即可证得结论.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵点E、F分别是▱ABCD边AD、BC的中点,
∴DE=AD,BF=BC,
∴DE=BF,
∴四边形BFDE是平行四边形,
∴BE=DF.
本题主要考查平行四边形的判定与性质定理,掌握对边平行且相等的四边形是平行四边形,是解题的关键.
26、(1);(2)4.
【解析】
(1)先利用待定系数法确定一次函数的解析式是y=2x-4;
(2)先确定直线y=2x-4与两坐标轴的交点坐标,然后根据三角形面积公式求解.
【详解】
解: (1)设这个一次函数的解析式为: y=kx+b(k≠0) .
将点A代入上式得:
解得
∴这个一次函数的解析式为:
(2) ∵
∴当y=0时,2x-4=0,则x=2
∴图象与x轴交于点C(2,0)
∴
此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于把已知点代入解析式
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份广东省揭阳市2025届九上数学开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省揭阳普宁市2024年数学九上开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广东省普宁市九年级数学第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。