广东省汕头澄海区六校联考2025届九上数学开学质量检测模拟试题【含答案】
展开
这是一份广东省汕头澄海区六校联考2025届九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)矩形一个内角的平分线把矩形的一边分成和,则矩形的周长为( )
A.和B.C.D.以上都不对
2、(4分)若菱形的周长为24cm,一个内角为60°,则菱形的面积为( )
A.4cm2B.9cm2C.18cm2D.36cm2
3、(4分)某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是( )
A.平均数B.中位数C.众数D.方差
4、(4分)如图,以某点为位似中心,将△OAB进行位似变换得到△DFE,若△OAB与△DFE的相似比为k,则位似中心的坐标与k的值分别为( )
A.(2,2),2B.(0,0),2C.(2,2),D.(0,0),
5、(4分)如图,的对角线AC,BD相交于点O,是AB中点,且AE+EO=4,则的周长为
A.20B.16C.12D.8
6、(4分)如图,在▱ABCD中,AC与BD交于点O,下列说法正确的是( )
A.AC=BDB.AC⊥BDC.AO=COD.AB=BC
7、(4分)如图所示,在△ABC中,其中BC⊥AC,∠A=30°,AB=8m,点D是AB的中点,点E是AC的中点,则DE的长为( )
A.5B.4C.3D.2
8、(4分)下列分解因式正确的是( )
A.x2-x+2=x(x-1)+2B.x2-x=x(x-1)C.x-1=x(1-)D.(x-1)2=x2-2x+1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,,,,将折叠,使点与点重合,得到折痕,则的周长为_____.
10、(4分)如图,在四边形中,点是对角线的中点,点、分别是、的中点,,且,则______.
11、(4分)如果有意义,那么x的取值范围是_____.
12、(4分)已知函数是关于的一次函数,则的值为_____.
13、(4分)如图,已知两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3把线段AB缩小,则点A的对应点坐标是_________
(2,1)或(-2,-1)
三、解答题(本大题共5个小题,共48分)
14、(12分)图①,图②都是4×6的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,且点A,B均在格点上.
(1)在图①中以AB为对角线画出一个矩形,使矩形的另外两个顶点也在格点上,且所画的矩形不是正方形;
(2)在图②中以AB为对角线画出一个菱形,使菱形的另外两个顶点也在格点上,且所画的菱形不是正方形;
(3)图①中所画的矩形的面积为 ;图②中所画的菱形的周长为 .
15、(8分)如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.
(1)线段AB的长是______;
(2)在图中画出一条线段EF,使EF的长为,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.
16、(8分)《中国诗词大会》是央视首档全民参与的诗词节目,节目以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨,其中的一个比赛环节“飞花令”增加了节目悬念.新学期开学,某班组织了甲、乙两组同学进行了“飞花令”的对抗赛,规定说对一首得1分,比赛中有一方说出9首就结束两个人对抗,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:
甲组:9,4,6,5,9,6,7,6,8,6,9,5,7,6,9
乙组:4,6,7,6,7,9,7,5,8,7,6,7,9,6,8
(1)请你根据所给的两组数据,绘制统计图(表).
(2)把下面的表格补充完整.
(3)根据第(2)题表中数据,你会支持哪一组,并说明理由.
17、(10分)如图,在四边形中,,,,,、分别在、上,且,与相交于点,与相交于点.
(1)求证:四边形为矩形;
(2)判断四边形是什么特殊四边形?并说明理由;
(3)求四边形的面积.
18、(10分)如图,在平面直角坐标系中,为坐标原点,已知直线经过点,它与轴交于点,点在轴正半轴上,且.求直线的函数解析式;
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图菱形 ABCD 的对角线 AC,BD 的长分别为 12 cm,16 cm,则这个菱形的周长为____.
20、(4分)如图所示的圆形工件,大圆的半径为,四个小圆的半径为,则图中阴影部分的面积是_____(结果保留).
21、(4分)如图,一次函数y=kx+b的图象与x轴的交点坐标为(1,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=1;④不等式kx+b>0的解集是x>1.其中说法正确的有_________(把你认为说法正确的序号都填上).
22、(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C的面积和是9,则正方形D的边长为__________.
23、(4分)比较大小: _____. (填“>”、“1,
故答案为:x>1
此题考查二次根式有意义的条件,掌握其定义是解题关键
12、-1
【解析】
根据一次函数的定义,可得答案.
【详解】
解:由是关于x的一次函数,得
,解得m=-1.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
13、(2,1)或(-2,-1)
【解析】
如图所示:
∵A(6,3),B(6,0)两点,以坐标原点O为位似中心,相似比为,
∴A′、A″的坐标分别是A′(2,1),A″((﹣2,﹣1).
故答案为(2,1)或(﹣2,﹣1).
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)见解析;(3)8,4.
【解析】
(1)根据矩形的性质画图即可;
(2)根据菱形的性质画图即可;
(3)根据矩形的面积公式和菱形的周长公式即可得到结论.
【详解】
解:(1)如图①所示,矩形ACBD即为所求;
(2)如图②所示,菱形AFBE即为所求;
(3)矩形ACBD的面积=2×4=8;菱形AFBE的周长=4×=4,
故答案为:8,4.
本题考查了作图-应用与设计作图.熟记矩形和菱形的性质以及正方形的性质是解题的关键所在.
15、(1);(2)见解析,AB、CD、EF三条线段的长能成为一个直角三角形三边的长,理由见解析
【解析】
(1)直接利用勾股定理得出AB的长;
(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.
【详解】
(1)线段AB的长是:=;
故答案为:;
(2)如图所示:EF即为所求,
AB、CD、EF三条线段的长能成为一个直角三角形三边的长
理由:∵AB2=()2=5,DC2=8,EF2=13,
∴AB2+DC2=EF2,
∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.
此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.
16、(1)详见解析;(2)6.8;(3)答案不唯一,如:两组都支持,理由是:甲乙两组平均数一样.
【解析】
(1)根据题意可把数据整理成统计表;
(2)根据平均数和中位数的性质进行计算即可.
(3)根据比较平均数的大小,即可解答.
【详解】
(1)答案不唯一,如统计表
(2)甲组平均数: =6.8
乙组的中位数为:7.
(3)两组都支持,理由是:甲乙两组平均数一样.
此题考查统计表,平均数,中位数,解题关键在于看懂图中数据.
17、(1)见解析;(2)四边形EFPH为矩形,理由见解析;(3)
【解析】
(1)由平行线的性质证出∠BCD=90°即可;
(2)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出∠BEC=90°,根据矩形的性质和平行四边形的判定,推出平行四边形DEBP和AECP,推出EH//FP,EF//HP,推出平行四边形EFPH,根据矩形的判定推出即可;
(3)根据三角形的面积公式求出CF,求出EF,根据勾股定理求出PF,根据面积公式求出即可.
【详解】
(1)证明:∵AB//CD,
∴∠CBA+∠BCD=180°,
∵∠CBA=∠ADC=90°,
∴∠BCD=90°,
∴四边形ABCD是矩形;
(2)解:四边形EFPH为矩形;理由如下:
∵四边形ABCD是矩形,
∴AD=BC=5,AB=CD=2,AD∥BC,
由勾股定理得:CE= ,
同理BE=2,
∴CE2+BE2=5+20=25,
∵BC2=52=25,
∴BE2+CE2=BC2,
∴∠BEC=90°,
∴△BEC是直角三角形.
∵DE=BP,DE//BP,
∴四边形DEBP是平行四边形,
∴BE//DP,
∵AD=BC,AD//BC,DE=BP,
∴AE=CP,
∴四边形AECP是平行四边形,
∴AP//CE,
∴四边形EFPH是平行四边形,
∵∠BEC=90°,
∴平行四边形EFPH是矩形.
(3)解:∵四边形AECP是平行四边形,
∴PD=BE=2,
在Rt△PCD中,FC⊥PD,PC=BC-BP=4,
由三角形的面积公式得:PD•CF=PC•CD,
∴CF=,
∴EF=CE-CF=,
∵PF=,
∴S矩形EFPH=EF•PF=,
即:四边形EFPH的面积是.
本题综合考查了矩形的判定与性质、勾股定理及其逆定理、平行四边形的性质和判定,三角形的面积等知识点的运用,主要培养学生分析问题和解决问题的能力,此题综合性比较强,题型较好,难度也适中.
18、
【解析】
先求出,再由待定系数法求出直线的解析式.
【详解】
解:,
,
,
,
在轴正半轴,
,
设直线解析式为:,
∵在此图象上,代入到解析式中得:
,
解得.
直线的函数解析式为:.
主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,解本题的关键是熟练掌握待定系数法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、40cm
【解析】
根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.
【详解】
解:∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC=×12=6cm,
OB=BD=×16=8cm,
根据勾股定理得,,
所以,这个菱形的周长=4×10=40cm.
故答案为:40cm.
本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.
20、3080π.
【解析】
用大圆的面积减去4个小圆的面积即可得到剩余部分的面积,然后把R和r的值代入计算出对应的代数式的值.
【详解】
依题意得:65.41π-17.31π×4=4177.16π-1197.16π=3080π(mm1).
答:剩余部分面积为3080πmm1.
故答案为:3080π.
本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.也考查了求代数式的值.
21、①②③
【解析】
①因为一次函数的图象经过二、四象限,所以y随x的增大而减小,故本项正确;
②因为一次函数的图象与y轴的交点在正半轴上,所以b>0,故本项正确;
③因为一次函数的图象与x轴的交点为(1,0),所以当y=0时,x=1,即关于x的方程kx+b=0的解为x=1,故本项正确;
④由图象可得不等式kx+b>0的解集是x<1,故本项是错误的.故正确的有①②③.
22、3
【解析】
由勾股定理可知,两只角边的平方和等于斜边的平方,在此题中,各边的平方可以代表每个正方形的面积.建立等式,通过移项可得正方形D的面积,再开平方得到边长.
【详解】
每个正方形的面积=直角三角形各边的平方
再由勾股定理可联立等式
即,又正方形A、B、C的面积和是9
则,所以,所以正方形D的边长为
本题考察了直角三角形的勾股定理的应用,务必清楚的是题中每个正方行的面积=直角三角形各边的平方.
23、
【解析】
首先分别求出两个数的平方的大小;然后根据:两个正实数,平方大的这个数也大,判断出两个数的大小关系即可.
【详解】
解:,,
,
.
故答案为:.
此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数负实数,两个正实数,平方大的这个数也大.
二、解答题(本大题共3个小题,共30分)
24、(1)=; (2).
【解析】
(1)根据题意可知,,,,
,…由此得出第n个等式:an=;
(2)将每一个等式化简即可求得答案.
【详解】
解:(1)∵第1个等式:,
第2个等式:,
第3个等式:,
第4个等式:,
∴第n个等式:an=;
(2)a1+a2+a3+…+an
=(
=.
故答案为;.
此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.
25、 (1)见解析;(2)见解析
【解析】
(1)分别作出点A、C绕点B逆时针旋转90°所得对应点,再顺次连接即可得;
(2)分别作出点B、C变换后的对应点,再顺次连接即可得.
【详解】
(1)如图所示,△A1BC1即为所求.
(2)如图所示,△AB2C2即为所求.
考查作图-旋转变换、位似变换,解题的关键是掌握旋转变换和位似变换的定义与性质.
26、(1) (2) (3)见解析
【解析】
(1)利用中位数的定义确定的值即可; (2)用40≤x<45范围内的人数除以总人数乘以周角的度数即可; (3)利用平均数、中位数的意义列举即可.
【详解】
解:(1)∵共20人,
∴中位数是第10或11人的平均数,为42分和43分,
即: ,
故答案为:42.5;
(2)两组中40≤x<45共有7+7=14人,
所以40≤x<45的圆心角为,
故答案为:.
(3)∵41<41.8 ∴从平均数角度看乙班成绩好;
∵41<42.5,
∴从中位数角度看乙班成绩好.
本题考查了扇形统计图的知识,解题的关键是仔细的读题并从中进一步整理出解题的有关信息.
题号
一
二
三
四
五
总分
得分
批阅人
统计量
平均分(分)
方差(分2)
中位数(分)
合格率
优秀率
甲组
2.56
6
80.0%
26.7%
乙组
6.8
1.76
86.7%
13.3%
甲
32
35
46
23
41
49
37
41
36
41
37
44
39
46
46
41
50
43
44
49
乙
25
34
43
46
35
41
42
46
44
42
47
45
42
34
39
47
49
48
45
42
平均数(分)
中位数(分)
众数(分)
甲
41
41
乙
41.8
42
成绩(分)
4
5
6
7
8
9
甲组(人)
1
2
5
2
1
4
乙组(人)
1
1
4
5
2
2
统计量
平均分(分)
方差(分2)
中位数(分)
合格率
优秀率
甲组
6.8
2.56
6
80.0%
26.7%
乙组
6.8
1.76
7
86.7%
13.3%
相关试卷
这是一份广东省潮州湘桥区六校联考2025届九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份福建省泉州鲤城北片区六校联考2024年九上数学开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省珠海香洲区四校联考九上数学开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。