广东省深圳市龙岗区石芽岭学校2024年数学九年级第一学期开学监测试题【含答案】
展开
这是一份广东省深圳市龙岗区石芽岭学校2024年数学九年级第一学期开学监测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法中,正确的是
A.相等的角是对顶角B.有公共点并且相等的角是对顶角
C.如果和是对顶角,那么D.两条直线相交所成的角是对顶角
2、(4分)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是( )
A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<2
3、(4分)如图,在中,,,,是边上的动点,,,则的最小值为( )
A.B.C.5D.7
4、(4分)如图,E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是( )
A.对角线互相垂直B.对角线相等C.一组对边平行而另一组对边不平行D.对角线互相平分
5、(4分)已知一组数据,,,,的平均数为5,则另一组数据,,,,的平均数为( )
A.4B.5C.6D.7
6、(4分)如图,将绕直角顶点C顺时针旋转,得到,连接,若,则的度数是
A.
B.
C.
D.
7、(4分)下列式子没有意义的是( )
A.B.C.D.
8、(4分)把多项式4a2b+4ab2+b3因式分解正确的是( )
A.a(2a+b)2B.b(2a+b)2C.(a+2b)2D.4b(a+b)2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)点A(0,3)向右平移2个单位长度后所得的点A’的坐标为_____.
10、(4分)已知一组数据:0,2,x,4,5,这组数据的众数是 4,那么这组数据的平均数是_____.
11、(4分)为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐次数,并给制成如图所示的频数分布直方图,请根据图中信息,计算仰卧起坐次数在次的频率是______
12、(4分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解是__________.
13、(4分)若已知方程组的解是,则直线y=-kx+b与直线y=x-a的交点坐标是________。
三、解答题(本大题共5个小题,共48分)
14、(12分)已知y-2与x+3成正比例,且当x=-4时,y=0,求当x=-1时,y的值.
15、(8分)用无刻度的直尺按要求作图,请保留画图痕迹,不需要写作法.
(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.
(2)如图2,在8×6的正方形网格中,请用无刻度直尺画一个与△ABC面积相等,且以BC为边的平行四边形,顶点在格点上.
16、(8分)解分式方程:=
17、(10分)如图,在矩形中,为边上一点,连接,过点作,垂足为,若,.
(1)求证:;
(2)求的长(结果用根式表示).
18、(10分)如图,在△ABC中,AB=10,BC=8,AC=1.点D在AB边上(不包括端点),DE⊥AC,DF⊥BC,垂足分别为点E和点F,连结EF.
(1)判断四边形DECF的形状,并证明;
(2)线段EF是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形纸片ABCD,AB=2,∠ADB=30°,沿对角线BD折叠(使△ABD和△EBD落在同一平面内),A、E两点间的距离为______▲_____.
20、(4分)若正多边形的一个外角等于36°,那么这个正多边形的边数是________.
21、(4分)如图,正方形的边长为6,点是上的一点,连接并延长交射线于点,将沿直线翻折,点落在点处,的延长线交于点,当时,则的长为________.
22、(4分)某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为__分.
23、(4分)已知,是一元二次方程的两个实数根,则的值是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)闵行区政府为残疾人办实事,在道路改造工程中为盲人修建一条长3000米的盲道,根据规划设计和要求,某工程队在实际施工中增加了施工人员,每天修建的盲道比原计划多250米,结果提前2天完成工程,问实际每天修建盲道多少米.
25、(10分)计算:(4+)(4﹣)
26、(12分)某中学为了解该校学生的体育锻炼情况,随机抽查了该校部分学生一周的体育锻炼时间的情况,并绘制了如下两幅不完整的统计图:
根据以上信息解答以下问题:
(1)本次抽查的学生共有多少名,并补全条形统计图;
(2)写出被抽查学生的体育锻炼时间的众数和中位数;
(3)该校一共有1800名学生,请估计该校学生一周体育锻炼时间不低于9小时的人数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.由此逐一判断.
【详解】
A、对顶角是有公共顶点,且两边互为反向延长线,相等只是其性质,错误;
B、对顶角应该是有公共顶点,且两边互为反向延长线,错误;
C、角的两边互为反向延长线的两个角是对顶角,符合对顶角的定义,正确.
D、两条直线相交所成的角有对顶角、邻补角,错误;
故选C.
要根据对顶角的定义来判断,这是需要熟记的内容.
2、C
【解析】
【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.
【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,
∴不等式y1>y2的解集是﹣3<x<0或x>2,
故选C.
【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.
3、B
【解析】
先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.
【详解】
如图,连接PC.
∵在△ABC中,AC=6,BC=8,AB=10,
∴AB2=AC2+BC2,
∴∠C=90°.
又∵PE⊥AC于点E,PF⊥BC于点F.
∴∠CEP=∠CFP=90°,
∴四边形PECF是矩形.
∴PC=EF.
∴当PC最小时,EF也最小,
即当PC⊥AB时,PC最小,
∵BC•AC=AB•PC,即PC=,
∴线段EF长的最小值为.
故选B.
本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥AB时,PC取最小值是解答此题的关键.
4、A
【解析】
分析:根据三角形的中位线定理得到四边形EFGH一定是平行四边形,再推出一个角是直角,由矩形的判定定理可求解.
详解:连接AC、BD,两线交于O,
根据三角形的中位线定理得:EF∥AC,EF=AC,GH∥AC,GH=AC,
∴EF∥GH,EF=GH,
∴四边形EFGH一定是平行四边形,
∴EF∥AC,EH∥BD,
∵BD⊥AC,
∴EH⊥EF,
∴∠HEF=90°,
故选:A.
点睛:能够根据三角形的中位线定理证明:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等的四边形各边中点所得四边形是菱形.掌握这些结论,以便于运用.
5、D
【解析】
根据平均数的性质,所有数之和除以总个数即可得出平均数.
【详解】
依题意得:a1+4+a2-1+a3+1+a4-5+a5+5
=a1+a2+a3+a4+a5+10
=35,
所以平均数为35÷5=1.
故选D.
本题考查的是平均数的定义,本题利用了整体代入的思想,解题的关键是了解算术平均数的定义,难度不大.
6、C
【解析】
根据旋转的性质可得,可判断出是等腰直角三角形,根据等腰直角三角形的性质可得,再计算角的和差即可得出答案.
【详解】
解:绕直角顶点C顺时针旋转得到,
,,
是等腰直角三角形,
,
,
,
.
故选C.
本题考查了旋转的性质,等腰直角三角形的判定与性质等知识.熟记各性质并准确识图是解题的关键.
7、A
【解析】
试题分析:A.没有意义,故A符合题意;
B.有意义,故B不符合题意;
C.有意义,故C不符合题意;
D.有意义,故D不符合题意;
故选A.
考点:二次根式有意义的条件.
8、B
【解析】
先提公因式,再利用完全平方公式因式分解.
【详解】
4a2b+4ab2+b3
=b(4a2+4ab+b2)
=b(2a+b)2,
故选B.
本题考查的是因式分解,掌握提公因式法、完全平方公式是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(2,3)
【解析】根据横坐标右移加,左移减;纵坐标上移加,下移减可得A′的坐标为(0+2,3).
解:点A(0,3)向右平移2个单位长度后所得的点A′的坐标为(0+2,3),
即(2,3),
故答案为:(2,3).
10、3
【解析】
先根据众数的定义求出的值,再根据平均数的计算公式列式计算即可.
【详解】
解:,2,,4,5的众数是4,
,
这组数据的平均数是;
故答案为:3;
此题考查了众数和平均数,根据众数的定义求出的值是本题的关键,众数是一组数据中出现次数最多的数.
11、0.4
【解析】
根据计算仰卧起坐次数在次的频率.
【详解】
由图可知:仰卧起坐次数在次的频率.
故答案为:.
此题考查了频率、频数的关系:.
12、﹣3
【解析】
令时,解得,故与轴的交点为.由函数图象可得,当时,函数的图象在轴上方,且其函数图象在函数图象的下方,故解集是,所以关于的不等式的整数解为.
13、(-1,3)
【解析】
利用一次函数与二元一次方程组的关系,可知两一次函数的交点坐标就是两函数解析式所组成的方程组的解,可得结果.
【详解】
解:∵ 方程组 的解是 ,
∴直线y=kx−b与直线y=−x+a的交点坐标为(−1,3),
∴ 直线y=-kx+b与直线y=x-a的交点坐标为(-1,3).
故答案为:(-1,3)
本题考查了一次函数与二元一次方程(组):两一次函数的交点坐标是两函数解析式所组成的方程组的解.
三、解答题(本大题共5个小题,共48分)
14、2.
【解析】
利用正比例函数的定义,设y-1=k(x+3),然后把已知的对应值代入求出k得到y与x之间的函数关系式;计算自变量为-1对应的y的值即可
【详解】
由题意,设 y-1=k(x+3)(k≠0),
得:0-1=k(-4+3).
解得:k=1.
所以当x=-1时,y=1(-1+3)+1=2.
即当x=-1时,y的值为2.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b,将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.
15、(1)详见解析;(2)详见解析
【解析】
(1)连接AB,EF,交点设为P,射线AP即为所求;
(2)根据平行四边形的面积公式和三角形的面积公式可得,平行四边形的BC的对边到BC的距离等于A到BC的距离的一半,然后根据平行四边形的对边相等解答.
【详解】
解:(1)连接AB,EF,交点设为P,射线AP即为所求;
(2)如图所示,平行四边形MBCN即为所求.
本题考查了矩形的性质和平行四边形的判定,熟练掌握性质定理和网格特点是解题关键.
16、x=1
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
方程两边都乘以x(x﹣2),得:x=1(x﹣2),
解得:x=1,
检验:x=1时,x(x﹣2)=1×1=1≠0,
则分式方程的解为x=1.
本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
17、(1)见解析;(2).
【解析】
(1)由AAS即可证明
(2)由可得由可得,利用勾股定理在中可得方程,解方程即可.
【详解】
(1)在矩形ABCD中,AB=DC=5,∠B=∠C=90°,AD∥BC,AD=BC
∴∠AMB=∠DAE,
∵DE=DC,
∴AB=DE,
∵DE⊥AM,
∴∠DEA=∠DEM=90°
∴
在和中,
.
(2)设,
又
在中,,,
,
,
即
本题考查了矩形的性质、全等三角形的判定与性质、勾股定理,掌握矩形的性质、全等三角形的判定与性质、勾股定理是解题的关键.
18、(1)四边形DECF是矩形,理由见解析;(2)存在,EF=4.2.
【解析】
(1)根据勾股定理的逆定理得到△ABC是直角三角形,∠C=90°,由垂直的定义得到∠DEC=DFC=90°,于是得到四边形DECF是矩形;
(2)连结CD,由矩形的性质得到CD=EF,当CD⊥AB时,CD取得最小值,即EF为最小值,根据三角形的面积即可得到结论.
【详解】
解:(1)四边形DECF是矩形,
理由:∵在△ABC中,AB=10,BC=2,AC=1,
∴BC2+AC2=22+12=102=AB2,
∴△ABC是直角三角形,∠C=90°,
∵DE⊥AC,DF⊥BC,
∴∠DEC=DFC=90°,
∴四边形DECF是矩形;
(2)存在,连结CD,
∵四边形DECF是矩形,
∴CD=EF,
当CD⊥AB时,CD取得最小值,即EF为最小值,
∵S△ABC=AB•CD=AC•BC,
∴10×CD=1×2,
∴EF=CD=.
本题考查了矩形的判定和性质,垂线段最短,勾股定理的逆定理,三角形的面积,熟练掌握矩形的判定定理是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
解答:解:如图,
矩形ABCD的对角线交于点F,连接EF,AE,则有AF=FC=EF=FD=BF.
∵∠ADB=30°,
∴∠CFD=∠EFD=∠AFB=60°,
△AFE,△AFB都是等边三角形,
有AE=AF=AB=1.
20、十
【解析】
根据正多边形的外角和为360°,除以每个外角的度数即可知.
【详解】
解:∵正多边形的外角和为360°,
∴正多边形的边数为,
故答案为:十.
本题考查了正多边形的外角与边数的关系,解题的关键是熟知正多边形外角和等于每个外角的度数与边数的乘积.
21、
【解析】
根据翻折变换的性质可得AN=AB,∠BAE=∠NAE,再根据两直线平行,内错角相等可得∠BAE=∠F,从而得到∠NAE=∠F,根据等角对等边可得AM=FM,设CM=x,表示出DM、AM,然后利用勾股定理列方程求出x的值,从而得到AM的值,最后根据NM=AM-AN计算即可得解.
【详解】
∵△ABE沿直线AE翻折,点B落在点N处,
∴AN=AB=6,∠BAE=∠NAE,
∵正方形对边AB∥CD,
∴∠BAE=∠F,
∴∠NAE=∠F,
∴AM=FM,
设CM=x,∵AB=2CF=8,
∴CF=3
∴DM=6−x,AM=FM=3+x,
在Rt△ADM中,由勾股定理得,,
即
解得x=,
所以,AM=3+=,
所以,NM=AM−AN=−6=
本题考查翻折变换,解题关键在于熟练掌握勾股定理的性质.
22、87.1.
【解析】
根据加权平均数的含义和求法,可求出甲的平均成绩.
【详解】
面试和笔试的成绩分别为81分和90分,面试成绩和笔试成绩的权分别是1和4,
甲的平均成绩为:(分).
故答案为:87.1.
考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键.
23、1
【解析】
根据一元二次方程的根与系数的关系即可解答.
【详解】
解:根据一元二次方程的根与系数关系可得:
,
所以可得
故答案为1.
本题主要考查一元二次方程的根与系数关系,这是一元二次方程的重点知识,必须熟练掌握.
二、解答题(本大题共3个小题,共30分)
24、750米.
【解析】
设实际每天修建盲道x米,则原计划每天修建盲道(x﹣25)米,根据题意可得,实际比原计划少用2天完成任务,据此列方程求解.
解:设实际每天修建盲道x米,则原计划每天修建盲道(x﹣25)米,
由题意得,﹣=2,
解得:x=750,
经检验,x=750是原分式方程的解,且符合题意.
答:实际每天修建盲道750米.
“点睛”本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.
25、1.
【解析】
根据运算法则一一进行计算.
【详解】
原式=42﹣()2=16﹣7=1.
本题考查了等式的运算法则,熟练掌握等式的运算法则是本题解题关键.
26、(1)40,图形见解析;(2)众数是8,中位数是8.5;(3)900名
【解析】
(1) 本次抽查的学生数=每天锻炼10小时的人数÷每天锻炼10小时的人数占抽查学生的百分比;一周体育锻炼时间为9小时的人数 =抽查的人数-(每天锻炼7小时的人数+每天锻炼8小时的人数+每天锻炼10小时的人数);根据求得的数据补充条形统计图即可;
(2)一组数据中出现次数最多的数是众数,结合条形图,8出现了18次,所以确定众数就是18;把一组数据按从小到大的数序排列,处于中间位置的一个数字(或两个数字的平均值)叫做这组数据的中位数。由图可知第20、21个数分别是8、9,所以中位数是它们的平均数;
(3)该校学生一周体育锻炼时间不低于9小时的估计人数 =该校学生总数×一周体育锻炼时间不低于9小时的频率.
【详解】
(1)解:本次抽查的学生共有8÷20%=40(名)
一周体育锻炼时间为9小时的人数是40-(2+18+8)=12(名)
条形图补充如下:
(2)解:由条形图可知,8出现了18次,此时最多,所以众数是8
将40个数据按从小到大的顺序排列,第20、21个数分别是8、9,所以中位数是(8+9)÷2=8.5
(3)解:1800× =900(名)
答:估计该校学生一周体育锻炼时间不低于9小时的大约有900名.
此题主要考查统计调查的应用,解题的关键是根据题意得到本次抽查的学生的总人数.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024-2025学年广东省深圳市龙岗区石芽岭学校九上数学开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省深圳市龙岗区石芽岭学校2023-2024学年数学九上期末质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法不正确的是,下列函数属于二次函数的是,点A所在的象限是等内容,欢迎下载使用。
这是一份2023-2024学年广东省深圳市龙岗区石芽岭学校数学九年级第一学期期末达标检测试题含答案,共9页。