![广东省深圳市龙华区2025届九上数学开学预测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16267199/0-1729300068398/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省深圳市龙华区2025届九上数学开学预测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16267199/0-1729300068507/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省深圳市龙华区2025届九上数学开学预测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16267199/0-1729300068528/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广东省深圳市龙华区2025届九上数学开学预测试题【含答案】
展开
这是一份广东省深圳市龙华区2025届九上数学开学预测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,正方形的边长为2,点为的中点,连接,将沿折叠,点的对应点为.连接CF,则的长为( )
A.B.C.D.
2、(4分)计算 3-2的结果是( )
A.9B.-9C.D.
3、(4分)使式子有意义的x的取值范围是( )
A.x≥0B.x>0C.x>3D.x≥3
4、(4分)下列结论中,不正确的是( )
A.对角线互相垂直的平行四边形是菱形
B.对角线相等的平行四边形是矩形
C.一组对边平行,一组对边相等的四边形是平行四边形
D.对角线互相垂直的四边形面积等于对角线乘积的一半
5、(4分)下列命题:①一组对边平行且另一组对边相等的四边形是平行四边形;②一组邻角相等的平行四边形是矩形;③顺次连结矩形四边中点得到的四边形是菱形;④如果一个菱形的对角线相等,那么它一定是正方形.其中真命题个数是( )
A.个B.个C.个D.个
6、(4分)已知一次函数y1=2x+m与y2=2x+n(m≠n)的图象如图所示,则关于x与y的二元一次方程组 的解的个数为( )
A.0个B.1个C.2个D.无数个
7、(4分)下列图案中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
8、(4分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用12分钟追上甲;④乙到达终点时,甲离终点还有360米;其中正确的结论有( )
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数经过,且与y轴交点的纵坐标为4,则它的解析式为______.
10、(4分)如果一次函数的图像经过点和,那么函数值随着自变量的增大而__________.(填“增大”或“不变”或“减小”)
11、(4分)如图,O为数轴原点,数轴上点A表示的数是3,AB⊥OA,线段AB长为2,以O为圆心,OB为半径画弧交数轴于点C.则数轴上表示点C的数为_________.
12、(4分)已知菱形的两条对角线长为8cm和6cm,那么这个菱形的周长是______cm,面积是______cm1.
13、(4分)若不等式组恰有两个整数解,则m的取值范围是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为.
(1)画出将向右平移5个单位长度,再向上平移1个单位长度得到,并写出的坐标.
(2)画出关于原点成中心对称的,并写出的坐标.
15、(8分)电话计费问题,下表中有两种移动电话计费方式:
温馨揭示:方式一:月使用费固定收(月收费:38元/月);主叫不超限定时间不再收费(80分钟以内,包括80分钟);主叫超时部分加收超时费(超过部分0.15元/);被叫免费。
方式二:月使用费0元(无月租费);主叫限定时间0分钟;主叫每分钟0.35元/;被叫免费。
(1)设一个月内用移动电话主叫时间为,方式一计费元,方式二计费元。写出和关于的函数关系式。
(2)在平面直角坐标系中画出(1)中的两个函数图象,记两函数图象交点为点,则点的坐标为_____________________(直接写出坐标,并在图中标出点)。
(3)根据(2)中函数图象,请直接写出如何根据每月主叫时间选择省钱的计费方式。
16、(8分)如图,在Rt△ABC中,∠C=90°,∠B=54°,AD是△ABC的角平分线.求作AB的垂直平分线MN交AD于点E,连接BE;并证明DE=DB.(要求:尺规作图,保留作图痕迹,不写作法)
17、(10分)如图,在平面直角坐示系xOy中,直线与直线交于点A(3,m).
(1)求k,m的値;
(2)己知点P(n,n),过点P作垂直于y轴的直线与直线交于点M,过点P作垂直于x轴的直线与直线交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.
18、(10分)如图,在平面直角坐标系内,顶点的坐标分别为,、.
(1)平移,使点移到点,画出平移后的,并写出点的坐标.
(2)将绕点旋转,得到,画出旋转后的,并写出点的坐标.
(3)求(2)中的点旋转到点时,点经过的路径长(结果保留).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化成最简二次根式后与最简二次根式的被开方数相同,则a的值为______.
20、(4分)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED= _____.
21、(4分)直线y=3x﹣1向上平移4个单位得到的直线的解析式为:_____.
22、(4分)分解因式_____.
23、(4分)已知y与x+1成正比例,且x=1时,y=2.则x=-1时,y的值是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平行四边形中,E、F分别为边、的中点,是平行四边形的对角线,交的延长线于点G.
(1)求证:四边形是平行四边形.
(2)若,求的度数.
25、(10分)如图,在△ABC中,∠ABC=90°,
(1)按下列要求完成尺规作图:作线段AC的垂直平分线l,交AC于点O;连接BO并延长至D,使得OD=OB;连接DA、DC(保留作图痕迹,请标明字母);
(2)判断四边形ABCD的形状,并说明理由.
26、(12分)如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.
(1)求证:CF=CD;
(2)若AF平分∠BAD,连接DE,试判断DE与AF的位置关系,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
连接AF交BE于点O,过点F作MN⊥AB,由勾股定理可求BE的长,由三角形面积公式可求AO的长,由折叠的性质可得AO=OH= ,AB=BF=2,由勾股定理可求BN,FN的长,由矩形的性质可求FM,MC的长,由勾股定理可求CF的长.
【详解】
解:如图,连接AF交BE于点O,过点F作MN⊥AB,
∵AB∥CD,MN⊥AB,
∴MN⊥CD,
∵AB=2=AD,点E是AD中点,
∴AE=1,
∴EB=,
∵S△ABE=×AB×AE=×BE×AO,
∴2×1=AO,
∴AO=,
∵将△ABE沿BE折叠,点A的对应点为F,
∴AO=OH=,AB=BF=2,
∴AF=,
∵AF2-AN2=FN2,BF2-BN2=FN2,
∴AF2-AN2=BF2-BN2,
∴-(2-BN)2=4-BN2,
∴BN=,
∴FN=,
∵MN⊥AB,MN⊥CD,∠DCB=90°,
∴四边形MNBC是矩形,
∴BN=MC=,BC=MN=2,
∴MF=,
∴CF=.
故选:D.
本题考查了正方形的性质,矩形的判定,勾股定理,利用勾股定理列出等式求线段的长是本题的关键.
2、C
【解析】
直接利用负指数幂的性质进而得出答案.
【详解】
解: .
故选:C.
此题主要考查了负指数幂的性质,正确掌握负指数幂的性质是解题关键.
3、D
【解析】
根据二次根式有意义的条件:被开方数是非负数,列不等式求解.
【详解】
解:∵式子有意义,
∴x-3≥0,
解得:x≥3,
故选D..
本题考查了二次根式的意义的条件.关键是把握二次根式中的被开方数必须是非负数,否则二次根式无意义.
4、C
【解析】
由菱形和矩形的判定得出A、B正确,由等腰梯形的判定得出C不正确,由对角线互相垂直的四边形面积等于对角线乘积的一半,得出D正确,即可得出结论.
【详解】
A.∵对角线互相垂直的平行四边形是菱形,∴A正确;
B.∵对角线相等的平行四边形是矩形,∴B正确;
C.∵一组对边平行,一组对边相等的四边形是平行四边形或等腰梯形,∴C不正确;
D.∵对角线互相垂直的四边形面积等于对角线乘积的一半,∴D正确;
故选:C.
考查了菱形的判定、矩形的判定、平行四边形的判定、等腰梯形的判定以及四边形面积;熟记菱形/矩形和等腰梯形的判定方法是解题的关键.
5、B
【解析】
根据平行四边形的判定方法对①进行判断;根据矩形的判定方法对②进行判断即可;根据三角形中位线性质和菱形的判定方法对③进行判断;根据正方形的判定方法对④进行判断.
【详解】
解:①错误,反例为等腰梯形;②正确,理由一组邻角相等,且根据平行四边形的性质,可得它们都为直角,从而推得矩形;③正确,理由:得到的四边形的边长都等于矩形对角线的一半;④正确.
故答案为B.
本题考查了命题与定理:判断一件事情的语句,叫做命题.判定一个命题的真假关键在于对基本知识的掌握.
6、A
【解析】
图象可知,一次函数y1=2x+m与y2=2x+n(m≠n)是两条互相平行的直线,所以关于x与y的二元一次方程组无解.
【详解】
∵一次函数y1=2x+m与y2=2x+n(m≠n)是两条互相平行的直线,
∴关于x与y的二元一次方程组无解.
故选A.
本题考查了一次函数与二元一次方程(组),方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
7、B
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.是轴对称图形,不是中心对称图形,故此选项错误;
B.是轴对称图形,也是中心对称图形,故此选项正确;
C.是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合,故此选项错误;
D.是轴对称图形,不是中心对称图形,故此选项错误.
故选B.
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.
8、D
【解析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:由题意可得:甲步行速度==60米/分;故①符合题意;
设乙的速度为:x米/分,
由题意可得:16×60=(16﹣4)x,
解得x=80
∴乙的速度为80米/分;
∴乙走完全程的时间==30分,
故②符合题意;
由图可得:乙追上甲的时间为(16﹣4)=12分;
故③符合题意;
乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,
故④符合题意;
故正确的结论为:①②③④,
故选:D.
本题考查了一次函数的应用,明确题意,读懂函数图像,是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=2x+1.
【解析】
用待定系数法,把(﹣1,2),(0,1)分别代入y=kx+b,可求得k,b.
【详解】
解:把(﹣1,2),(0,1)分别代入y=kx+b得,
,
解得,
所以,y=2x+1.
故答案为y=2x+1.
本题考核知识点:待定系数法求一次函数解析式. 解题关键点:掌握求函数解析式的一般方法.
10、增大
【解析】
根据一次函数的单调性可直接得出答案.
【详解】
当时,;当时,,
∵ ,
∴函数值随着自变量的增大而增大,
故答案为:增大.
本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键.
11、
【解析】
首先利用勾股定理得出BO的长,再利用A点的位置得出答案.
【详解】
解:∵AB⊥OA
∴∠OAB=90°,
∵OA=3、AB=2,
则数轴上表示点C的数为
故答案为:
本题考查的是实数与数轴以及勾股定理,熟知实数与数轴上各点是一一对应关系与勾股定理是解答此题的关键.
12、10,14
【解析】
解:∵菱形的两条对角线长为8cm和6cm,∴菱形的两条对角线长的一半分别为4cm和3cm,根据勾股定理,边长==5cm,所以,这个菱形的周长是5×4=10cm,面积=×8×6=14cm1.故答案为10,14.
点睛:本题考查了菱形的性质,熟练掌握菱形的对角线互相垂直平分是解题的关键,另外,菱形的面积可以利用底乘以高,也可以利用对角线乘积的一半求解.
13、-1≤m
相关试卷
这是一份广东省深圳龙华区七校联考2024-2025学年数学九上开学检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东深圳市龙华区锦华实验学校2024年数学九上开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广东省阳东广雅学校九上数学开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。