广东省深圳市南山区北师大附中2024年数学九上开学质量跟踪监视模拟试题【含答案】
展开
这是一份广东省深圳市南山区北师大附中2024年数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,是一次函数的图象上的两个点,则,的大小关系是
A.B.C.D.不能确定
2、(4分)下列图案中,是中心对称图形的是( )
A.B. C. D.
3、(4分)下列命题:①任何数的平方根有两个;②如果一个数有立方根,那么它一定有平方根;③算术平方根一定是正数;④非负数的立方根不一定是非负数.错误的个数为( )
A.1 B.2 C.3 D.4
4、(4分)我市城区测得上一周PM2.5的日均值(单位mg/m3)如下:50,40,75,50,57,40,50.则这组数据的众数是( )
A.40B.50C.57D.75
5、(4分)已知点P(a,1)不在第一象限,则点Q(0,﹣a)在( )
A.x轴正半轴上B.x轴负半轴上
C.y轴正半轴或原点上D.y轴负半轴上
6、(4分)如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=( )
A.50°B.40°C.80°D.100°
7、(4分)如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是( )
A.2B.4C.8D.16
8、(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,且BD=2CD,BC=6cm,则点D到AB的距离为( )
A.4cmB.3cmC.2cmD.1cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,以的两条直角边分别向外作等腰直角三角形.若斜边,则图中阴影部分的面积为_____.
10、(4分)如图,含有30°的直角三角板△ABC,∠BAC=90°,∠C=30°,将△ABC绕着点A逆时针旋转,得到△AMN,使得点B落在BC边上的点M处,过点N的直线l∥BC,则∠1=______.
11、(4分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长是_______.
12、(4分)如图,是用形状、大小完全相同的等腰梯形镶嵌的图案,则这个图案中的等腰三角形的底角(指锐角)的度数是_____.
13、(4分)如图,□ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是_________;
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:
(1)2﹣+;
(2)(3+)×(﹣5)
15、(8分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
16、(8分)如图,平面直角坐标系中的每个小正方形边长为1,△ABC的顶点在网格的格点上.
(1)画线段AD∥BC,且使AD=BC,连接BD;此时D点的坐标是 .
(2)直接写出线段AC的长为 ,AD的长为 ,BD的长为 .
(3)直接写出△ABD为 三角形,四边形ADBC面积是 .
17、(10分)类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”.
(1)已知:如图1,在“准等边四边形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC的长;
(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;
(3)如图2,在△ABC中,AB=AC=,∠BAC=90°.在AB的垂直平分线上是否存在点P,使得以A,B,C,P为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.
18、(10分)临近期末,历史老师为了了解所任教的甲、乙两班学生的历史基础知识背诵情况,从甲、乙两个班学生中分别随机抽取了20名学生来进行历史基础知识背诵检测,满分50分,得到学生的分数相关数据如下:
通过整理,分析数据:两组数据的平均数、中位数、众数如下表:
历史老师将乙班成绩按分数段(,,,,,表示分数)绘制成扇形统计图,如图(不完整)
请回答下列问题:
(1)_______分;
(2)扇形统计图中,所对应的圆心角为________度;
(3)请结合以上数据说明哪个班背诵情况更好(列举两条理由即可).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知一次函数y=kx+b经过A(2,0),B(0,﹣1),当y>0时,则x的取值范围是_____.
20、(4分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为________________.
21、(4分)如图,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,则草坪的面积是_____平方米.
22、(4分) 若10个数的平均数是3,方差是4,现将这10个数都扩大2倍,则这组新数据的方差是_____.
23、(4分)计算:÷=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)小明九年级上学期的数学成绩如下表:
(1)计算小明这学期的数学平时平均成绩?
(2)如果学期总评成绩是根据如图所示的权重计算,求小明这学期的数学总评成绩?
25、(10分)为了了解高峰时段37路公交车从总站乘该路车出行的人数,随机抽查了10个班次乘该路车人数,结果如下:16,25,18,1,25,30,28,29,25,1.
(1)请求出这10个班次乘该路车人数的平均数、众数与中位数;
(2)如果37路公交车在高峰时段从总站共发出50个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少人?
26、(12分)已知在中,是的中点,,垂足为,交于点,且.
(1)求的度数;
(2)若,,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据,是一次函数的图象上的两个点,由,结合一次函数在定义域内是单调递减函数,判断出,的大小关系即可.
【详解】
,是一次函数的图象上的两个点,且,
.
故选:C.
【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是熟练掌握一次函数的性质.
2、D
【解析】
根据中心对称图形的定义逐一进行分析判断即可.
【详解】
A、不是中心对称图形,故不符合题意;
B、不是中心对称图形,故不符合题意;
C、不是中心对称图形,故不符合题意;
D、是中心对称图形,故符合题意,
故选D.
本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.
3、D
【解析】【分析】根据立方根和平方根的知识点进行解答,正数的平方根有两个,1的平方根只有一个,任何实数都有立方根,则非负数才有平方根,一个数的立方根与原数的性质符号相同,据此进行答题.
【详解】①1的平方根只有一个,故任何数的平方根都有两个结论错误;
②负数有立方根,但是没有平方根,故如果一个数有立方根,那么它一定有平方根结论错误;
③算术平方根还可能是1,故算术平方根一定是正数结论错误;
④非负数的立方根一定是非负数,故非负数的立方根不一定是非负数,
错误的结论①②③④,
故选D.
【点睛】本题主要考查立方根、平方根和算术平方根的知识点,注意一个正数有两个平方根,它们互为相反数;1的平方根是1;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,1的立方根式1.
4、B
【解析】
根据众数的定义求解即可.
【详解】
在50,40,75,50,57,40,50.这组数据中,50出现三次,次数最多,故众数是50.
故选B.
此题考查一组数据的众数的确定方法,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
5、C
【解析】
根据题意得出a的取值范围,进而得出答案.
【详解】
解:∵点P(a,1)不在第一象限,
∴a≤0,
则﹣a≥0,
故点Q(0,﹣a)在:y轴正半轴上或原点.
故选:C.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
6、C
【解析】
由平行四边形的性质及角平分线的性质可得∠ADC的大小,进而可求解∠B的度数.
【详解】
解:在Rt△ADF中,∵∠DAF=50°,
∴∠ADE=40°,
又∵DE平分∠ADC,
∴∠ADC=80°,
∴∠B=∠ADC=80°.
故选:C.
本题主要考查平行四边形的性质及角平分线的性质,应熟练掌握,并能做一些简单的计算问题.
7、A
【解析】
解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为,新数据是在原来每个数上加上100得到,则新平均数变为+100,则每个数都加了100,原来的方差s12= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2]=2,现在的方差s22= [(x1+100﹣﹣100)2+(x2+100﹣﹣100)2+…+(xn+100﹣﹣100)2]= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2]=2,方差不变.
故选:A.
方差的计算公式:s2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2]
8、C
【解析】
作DE⊥AB于E,根据题意求出CD,根据角平分线的性质求出DE.
【详解】
解:作DE⊥AB于E,
∵BD=2CD,BC=6,
∴CD=2,
∵AD平分∠BAC,∠C=90°,DE⊥AB,
∴DE=CD=2,
即点D到AB的距离为2cm,
故选:C.
本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据勾股定理和等腰直角三角形的面积公式,即可得到结论.
【详解】
解:在Rt△ABC中,AB2=AC2+BC2,AB=5,
S阴影=(AC2+BC2)=×25=,
故答案为.
本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.
10、30°
【解析】
试题分析:根据旋转图形的性质可得:AB=AM,∠AMN=∠B=60°,∠ANM=∠C=30°,根据∠B=60°可得:△ABM为等边三角形,则∠NMC=60°,根据平行线的性质可得:∠1+∠ANM=∠NMC=60°,则∠1=60°-30°=30°.
11、41
【解析】
证明△ABN≌△ADN,求得AD=AB=10,BN=DN,继而可和CD长,结合M为BC的中点判断MN是△BDC的中位线,从而得出CD长,再根据三角形周长公式进行计算即可得.
【详解】
在△ABN和△ADN中,
,
∴△ABN≌△ADN,
∴BN=DN,AD=AB=10,
又∵点M是BC中点,
∴MN是△BDC的中位线,
∴CD=2MN=6,
故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41,
故答案为:41.
本题考查了全等三角形的判定与性质,三角形的中位线定理,等腰三角形的判定等,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.
12、60°
【解析】
本题主要考查了等腰梯形的性质,平面镶嵌(密铺).关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
【详解】
解:由图可知,铺成的一个图形为平行四边形,而原图形为等腰梯形,则现铺成的图形的底角为:180°÷3=60°.
故答案为60°.
13、8
【解析】
∵四边形ABCD是平行四边形,
∴O是BD中点,△ABD≌△CDB,
又∵E是CD中点,
∴OE是△BCD的中位线,
∴OE=BC,
即△DOE的周长=△BCD的周长,
∴△DOE的周长=△DAB的周长.
∴△DOE的周长=×16=8cm.
三、解答题(本大题共5个小题,共48分)
14、(1)3(2)-2-13
【解析】
(1)先化简,再合并同类项即可求解.
(2)利用二次根式的乘除法运算即可.
【详解】
(1)2﹣+=6-4+=3
(2)(3+)×(﹣5)=3-15+2-5=-2-13
此题考查二次根式的混合运算,解题关键在于掌握运算法则
15、(1)饮用水和蔬菜分别为1件和2件
(2)设计方案分别为:
①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车3辆,乙车3辆
(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元
【解析】
试题分析:(1)关系式为:饮用水件数+蔬菜件数=320;
(2)关系式为:30×甲货车辆数+20×乙货车辆数≥1;10×甲货车辆数+20×乙货车辆数≥2;
(3)分别计算出相应方案,比较即可.
试题解析:(1)设饮用水有x件,则蔬菜有(x﹣80)件.
x+(x﹣80)=320,
解这个方程,得x=1.
∴x﹣80=2.
答:饮用水和蔬菜分别为1件和2件;
(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:
,
解这个不等式组,得2≤m≤3.
∵m为正整数,
∴m=2或3或3,安排甲、乙两种货车时有3种方案.
设计方案分别为:
①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车3辆,乙车3辆;
(3)3种方案的运费分别为:
①2×300+6×360=2960(元);
②3×300+5×360=3000(元);
③3×300+3×360=3030(元);
∴方案①运费最少,最少运费是2960元.
答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.
考点:1.一元一次不等式组的应用;2.二元一次方程组的应用.
16、(1)如图所示:D点的坐标是(0,﹣4);(2)线段AC的长为,AD的长为2,BD的长为;(3)△ABD为 直角三角形,四边形ADBC面积是1.
【解析】
(1)根据题意画出图形,进一步得到D点的坐标;
(2)根据勾股定理可求线段AC的长,AD的长,BD的长;
(3)根据勾股定理的逆定理可得△ABD为直角三角形,再根据矩形的面积公式即可求解.
【详解】
(1)如图所示:D点的坐标是(0,﹣4);
(2)线段AC的长为 AD的长为BD的长为
(3)∵
∴△ABD为 直角三角形,四边形ADBC面积是
考查了勾股定理,勾股定理的逆定理,矩形的面积,勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
17、(1)5;(2)正确,证明详见解析;(3)存在,有四种情况,面积分别是:,,,
【解析】
(1)根据勾股定理计算BC的长度,
(2)根据对角线互相垂直平分的四边形是菱形判断,
(3)有四种情况,作辅助线,将四边形分成两个三角形和一个四边形或两个三角形,相加可得结论.
【详解】
(1)∵BD⊥CD
∴∠BDC=90°,BC>CD
∵在“准等边四边形”ABCD中,BC≠AB,
∴AB=AD=CD=3,
∵BD=4,
∴BC=,
(2)正确.
如图所示:
∵AB=AD
∴ΔABD是等腰三角形.
∵AC⊥BD.
∴AC垂直平分BD.
∴BC=CD
∴CD =AB=AD=BC
∴四边形 ABCD是菱形.
(3)存在四种情况,
如图2,四边形ABPC是“准等边四边形”,过C作于F,则,
∵EP是AB的垂直平分线,
∴ ,
∴四边形AEFC是矩形,
在中, ,
∴ ,
∵
∴
∴
如图4,四边形ABPC是“准等边四边形”,
∵ ,
∴是等边三角形,
∴ ;
如图5,四边形ABPC是“准等边四边形”,
∵ ,PE是AB的垂直平分线,
∴ E是AB的中点,
∴ ,
∴
∴
如图6,四边形ABPC是“准等边四边形”,过P作于F,连接AP,
∵,
∴,
∴
本题考查了四边形综合题,矩形和菱形的判定和性质,“准等边四边形”的定义等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形和矩形解题,学会用分类讨论的思想解决问题,难度较大,属于中考压轴题.
18、(1) (2) (3)见解析
【解析】
(1)利用中位数的定义确定的值即可; (2)用40≤x<45范围内的人数除以总人数乘以周角的度数即可; (3)利用平均数、中位数的意义列举即可.
【详解】
解:(1)∵共20人,
∴中位数是第10或11人的平均数,为42分和43分,
即: ,
故答案为:42.5;
(2)两组中40≤x<45共有7+7=14人,
所以40≤x<45的圆心角为,
故答案为:.
(3)∵41<41.8 ∴从平均数角度看乙班成绩好;
∵41<42.5,
∴从中位数角度看乙班成绩好.
本题考查了扇形统计图的知识,解题的关键是仔细的读题并从中进一步整理出解题的有关信息.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x>1
【解析】
利用待定系数法可得直线AB的解析式为y=x−1,依据当y>0时,x−1>0,即可得到x的取值范围.
【详解】
解:由A(1,0),B(0,﹣1),可得直线AB的解析式为y=x﹣1,
∴当y>0时,x﹣1>0,
解得x>1,
故答案为:x>1.
本题主要考查了一次函数与不等式之间的联系,直线上任意一点的坐标都满足函数关系式y=kx+b,解题关键是求出直线解析式.
20、2.5×10-1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.0000025=2.5×10-1,
故答案为2.5×10-1.
本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
21、1.
【解析】
草坪的面积等于矩形的面积-两条路的面积+两条路重合部分的面积,由此计算即可.
【详解】
解:S=32×24-2×24-2×32+2×2=1(m2).
故答案为:1.
本题考查了生活中的平移现象,解答本题的关键是求出草坪总面积的表达式.
22、1
【解析】
根据方差的性质可知,数据中的每个数据都扩大2倍,则方差扩大4倍,即可得出答案.
【详解】
解:∵将这组数据中的每个数据都扩大2倍,所得到的一组数据的方差将扩大4倍,
∴新数据的方差是4×4=1,
故答案为:1.
本题考查了方差:一般地设有n个数据,x1,x2,…xn,若每个数据都扩大相同的倍数后,方差则变为这个倍数的平方倍.
23、1
【解析】
直接利用二次根式的除法运算法则得出即可.
【详解】
解:÷==1.
故答案为1.
本题考查二次根式的除法运算,根据二次根式的运算法则得出是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)108 (2)110.4
【解析】
(1)根据平均数的计算公式计算即可.
(2)根据权重乘以每个时期的成绩总和为总评成绩计算即可.
【详解】
(1)根据平均数的计算公式可得:
因此小明这学期的数学平时平均成绩为108
(2)根据题意可得:
因此小明这学期的数学总评成绩110.4
本题主要考查数据统计方面的知识,关键要熟悉概念和公式,应当熟练掌握.
25、解:(1)平均数是25人,众数是25人,中位数是26人;(2)1250 人.
【解析】
(1)根据平均、众数和中位数的概念分别求解即可;
(2)用平均数乘以发车班次就是乘客的总人数.
【详解】
解:(1)平均数=(16+25+18+1+25+30+28+29+25+1)=25(人),
这组数据按从小到大的顺序排列为:16,18,25,25,25,1,1,28,29,30,
中位数为:;
众数为:25;
(2)50×25=1250(人);
答:在高峰时段从总站乘该路车出行的乘客共有1250人.
本题考查了众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.
26、(1)90°(1)1.4
【解析】
(1)连接CE,根据线段垂直平分线的性质转化线段BE到△AEC中,利用勾股定理的逆定理可求∠A度数;
(1)设AE=x,则AC可用x表示,在Rt△ABC中利用勾股定理得到关于x的方程求解AE值.
【详解】
(1)连接CE,∵D是BC的中点,DE⊥BC,
∴CE=BE.
∵BE1−AE1=AC1,
∴AE1+AC1=CE1.
∴△AEC是直角三角形,∠A=90°;
(1)在Rt△BDE中,BE==2.
所以CE=BE=2.
设AE=x,则在Rt△AEC中,AC1=CE1−AE1,
所以AC1=12−x1.
∵BD=4,
∴BC=1BD=3.
在Rt△ABC中,根据BC1=AB1+AC1,
即64=(2+x)1+12−x1,
解得x=1.4.
即AE=1.4.
本题主要考查了勾股定理及其逆定理,解题的关键是利用勾股定理求解线段长度,选择直角三角形借助勾股定理构造方程是解这类问题通用方法.
题号
一
二
三
四
五
总分
得分
甲
32
35
46
23
41
49
37
41
36
41
37
44
39
46
46
41
50
43
44
49
乙
25
34
43
46
35
41
42
46
44
42
47
45
42
34
39
47
49
48
45
42
平均数(分)
中位数(分)
众数(分)
甲
41
41
乙
41.8
42
测试
类别
平 时
期中
期末
测试1
测试2
测试4
课题学习
112
110
成绩(分)
106
102
115
109
相关试卷
这是一份广东省深圳市罗芳中学2025届数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省深圳市光明区2025届数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份北京大附中2025届数学九上开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。