年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    广东省深圳市南山区北师大附中2024年数学九上开学质量跟踪监视模拟试题【含答案】

    广东省深圳市南山区北师大附中2024年数学九上开学质量跟踪监视模拟试题【含答案】第1页
    广东省深圳市南山区北师大附中2024年数学九上开学质量跟踪监视模拟试题【含答案】第2页
    广东省深圳市南山区北师大附中2024年数学九上开学质量跟踪监视模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省深圳市南山区北师大附中2024年数学九上开学质量跟踪监视模拟试题【含答案】

    展开

    这是一份广东省深圳市南山区北师大附中2024年数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知,是一次函数的图象上的两个点,则,的大小关系是
    A.B.C.D.不能确定
    2、(4分)下列图案中,是中心对称图形的是( )
    A.B. C. D.
    3、(4分)下列命题:①任何数的平方根有两个;②如果一个数有立方根,那么它一定有平方根;③算术平方根一定是正数;④非负数的立方根不一定是非负数.错误的个数为( )
    A.1 B.2 C.3 D.4
    4、(4分)我市城区测得上一周PM2.5的日均值(单位mg/m3)如下:50,40,75,50,57,40,50.则这组数据的众数是( )
    A.40B.50C.57D.75
    5、(4分)已知点P(a,1)不在第一象限,则点Q(0,﹣a)在( )
    A.x轴正半轴上B.x轴负半轴上
    C.y轴正半轴或原点上D.y轴负半轴上
    6、(4分)如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=( )
    A.50°B.40°C.80°D.100°
    7、(4分)如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是( )
    A.2B.4C.8D.16
    8、(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,且BD=2CD,BC=6cm,则点D到AB的距离为( )
    A.4cmB.3cmC.2cmD.1cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,以的两条直角边分别向外作等腰直角三角形.若斜边,则图中阴影部分的面积为_____.
    10、(4分)如图,含有30°的直角三角板△ABC,∠BAC=90°,∠C=30°,将△ABC绕着点A逆时针旋转,得到△AMN,使得点B落在BC边上的点M处,过点N的直线l∥BC,则∠1=______.
    11、(4分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长是_______.
    12、(4分)如图,是用形状、大小完全相同的等腰梯形镶嵌的图案,则这个图案中的等腰三角形的底角(指锐角)的度数是_____.
    13、(4分)如图,□ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是_________;
    三、解答题(本大题共5个小题,共48分)
    14、(12分)计算:
    (1)2﹣+;
    (2)(3+)×(﹣5)
    15、(8分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
    (1)求饮用水和蔬菜各有多少件?
    (2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
    (3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
    16、(8分)如图,平面直角坐标系中的每个小正方形边长为1,△ABC的顶点在网格的格点上.
    (1)画线段AD∥BC,且使AD=BC,连接BD;此时D点的坐标是 .
    (2)直接写出线段AC的长为 ,AD的长为 ,BD的长为 .
    (3)直接写出△ABD为 三角形,四边形ADBC面积是 .
    17、(10分)类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”.
    (1)已知:如图1,在“准等边四边形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC的长;
    (2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;
    (3)如图2,在△ABC中,AB=AC=,∠BAC=90°.在AB的垂直平分线上是否存在点P,使得以A,B,C,P为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.
    18、(10分)临近期末,历史老师为了了解所任教的甲、乙两班学生的历史基础知识背诵情况,从甲、乙两个班学生中分别随机抽取了20名学生来进行历史基础知识背诵检测,满分50分,得到学生的分数相关数据如下:
    通过整理,分析数据:两组数据的平均数、中位数、众数如下表:
    历史老师将乙班成绩按分数段(,,,,,表示分数)绘制成扇形统计图,如图(不完整)
    请回答下列问题:
    (1)_______分;
    (2)扇形统计图中,所对应的圆心角为________度;
    (3)请结合以上数据说明哪个班背诵情况更好(列举两条理由即可).
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知一次函数y=kx+b经过A(2,0),B(0,﹣1),当y>0时,则x的取值范围是_____.
    20、(4分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为________________.
    21、(4分)如图,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,则草坪的面积是_____平方米.
    22、(4分) 若10个数的平均数是3,方差是4,现将这10个数都扩大2倍,则这组新数据的方差是_____.
    23、(4分)计算:÷=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)小明九年级上学期的数学成绩如下表:
    (1)计算小明这学期的数学平时平均成绩?
    (2)如果学期总评成绩是根据如图所示的权重计算,求小明这学期的数学总评成绩?
    25、(10分)为了了解高峰时段37路公交车从总站乘该路车出行的人数,随机抽查了10个班次乘该路车人数,结果如下:16,25,18,1,25,30,28,29,25,1.
    (1)请求出这10个班次乘该路车人数的平均数、众数与中位数;
    (2)如果37路公交车在高峰时段从总站共发出50个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少人?
    26、(12分)已知在中,是的中点,,垂足为,交于点,且.
    (1)求的度数;
    (2)若,,求的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据,是一次函数的图象上的两个点,由,结合一次函数在定义域内是单调递减函数,判断出,的大小关系即可.
    【详解】
    ,是一次函数的图象上的两个点,且,

    故选:C.
    【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是熟练掌握一次函数的性质.
    2、D
    【解析】
    根据中心对称图形的定义逐一进行分析判断即可.
    【详解】
    A、不是中心对称图形,故不符合题意;
    B、不是中心对称图形,故不符合题意;
    C、不是中心对称图形,故不符合题意;
    D、是中心对称图形,故符合题意,
    故选D.
    本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.
    3、D
    【解析】【分析】根据立方根和平方根的知识点进行解答,正数的平方根有两个,1的平方根只有一个,任何实数都有立方根,则非负数才有平方根,一个数的立方根与原数的性质符号相同,据此进行答题.
    【详解】①1的平方根只有一个,故任何数的平方根都有两个结论错误;
    ②负数有立方根,但是没有平方根,故如果一个数有立方根,那么它一定有平方根结论错误;
    ③算术平方根还可能是1,故算术平方根一定是正数结论错误;
    ④非负数的立方根一定是非负数,故非负数的立方根不一定是非负数,
    错误的结论①②③④,
    故选D.
    【点睛】本题主要考查立方根、平方根和算术平方根的知识点,注意一个正数有两个平方根,它们互为相反数;1的平方根是1;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,1的立方根式1.
    4、B
    【解析】
    根据众数的定义求解即可.
    【详解】
    在50,40,75,50,57,40,50.这组数据中,50出现三次,次数最多,故众数是50.
    故选B.
    此题考查一组数据的众数的确定方法,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    5、C
    【解析】
    根据题意得出a的取值范围,进而得出答案.
    【详解】
    解:∵点P(a,1)不在第一象限,
    ∴a≤0,
    则﹣a≥0,
    故点Q(0,﹣a)在:y轴正半轴上或原点.
    故选:C.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
    6、C
    【解析】
    由平行四边形的性质及角平分线的性质可得∠ADC的大小,进而可求解∠B的度数.
    【详解】
    解:在Rt△ADF中,∵∠DAF=50°,
    ∴∠ADE=40°,
    又∵DE平分∠ADC,
    ∴∠ADC=80°,
    ∴∠B=∠ADC=80°.
    故选:C.
    本题主要考查平行四边形的性质及角平分线的性质,应熟练掌握,并能做一些简单的计算问题.
    7、A
    【解析】
    解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为,新数据是在原来每个数上加上100得到,则新平均数变为+100,则每个数都加了100,原来的方差s12= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2]=2,现在的方差s22= [(x1+100﹣﹣100)2+(x2+100﹣﹣100)2+…+(xn+100﹣﹣100)2]= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2]=2,方差不变.
    故选:A.
    方差的计算公式:s2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2]
    8、C
    【解析】
    作DE⊥AB于E,根据题意求出CD,根据角平分线的性质求出DE.
    【详解】
    解:作DE⊥AB于E,
    ∵BD=2CD,BC=6,
    ∴CD=2,
    ∵AD平分∠BAC,∠C=90°,DE⊥AB,
    ∴DE=CD=2,
    即点D到AB的距离为2cm,
    故选:C.
    本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据勾股定理和等腰直角三角形的面积公式,即可得到结论.
    【详解】
    解:在Rt△ABC中,AB2=AC2+BC2,AB=5,
    S阴影=(AC2+BC2)=×25=,
    故答案为.
    本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.
    10、30°
    【解析】
    试题分析:根据旋转图形的性质可得:AB=AM,∠AMN=∠B=60°,∠ANM=∠C=30°,根据∠B=60°可得:△ABM为等边三角形,则∠NMC=60°,根据平行线的性质可得:∠1+∠ANM=∠NMC=60°,则∠1=60°-30°=30°.
    11、41
    【解析】
    证明△ABN≌△ADN,求得AD=AB=10,BN=DN,继而可和CD长,结合M为BC的中点判断MN是△BDC的中位线,从而得出CD长,再根据三角形周长公式进行计算即可得.
    【详解】
    在△ABN和△ADN中,

    ∴△ABN≌△ADN,
    ∴BN=DN,AD=AB=10,
    又∵点M是BC中点,
    ∴MN是△BDC的中位线,
    ∴CD=2MN=6,
    故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41,
    故答案为:41.
    本题考查了全等三角形的判定与性质,三角形的中位线定理,等腰三角形的判定等,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.
    12、60°
    【解析】
    本题主要考查了等腰梯形的性质,平面镶嵌(密铺).关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
    【详解】
    解:由图可知,铺成的一个图形为平行四边形,而原图形为等腰梯形,则现铺成的图形的底角为:180°÷3=60°.
    故答案为60°.
    13、8
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴O是BD中点,△ABD≌△CDB,
    又∵E是CD中点,
    ∴OE是△BCD的中位线,
    ∴OE=BC,
    即△DOE的周长=△BCD的周长,
    ∴△DOE的周长=△DAB的周长.
    ∴△DOE的周长=×16=8cm.
    三、解答题(本大题共5个小题,共48分)
    14、(1)3(2)-2-13
    【解析】
    (1)先化简,再合并同类项即可求解.
    (2)利用二次根式的乘除法运算即可.
    【详解】
    (1)2﹣+=6-4+=3
    (2)(3+)×(﹣5)=3-15+2-5=-2-13
    此题考查二次根式的混合运算,解题关键在于掌握运算法则
    15、(1)饮用水和蔬菜分别为1件和2件
    (2)设计方案分别为:
    ①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车3辆,乙车3辆
    (3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元
    【解析】
    试题分析:(1)关系式为:饮用水件数+蔬菜件数=320;
    (2)关系式为:30×甲货车辆数+20×乙货车辆数≥1;10×甲货车辆数+20×乙货车辆数≥2;
    (3)分别计算出相应方案,比较即可.
    试题解析:(1)设饮用水有x件,则蔬菜有(x﹣80)件.
    x+(x﹣80)=320,
    解这个方程,得x=1.
    ∴x﹣80=2.
    答:饮用水和蔬菜分别为1件和2件;
    (2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:

    解这个不等式组,得2≤m≤3.
    ∵m为正整数,
    ∴m=2或3或3,安排甲、乙两种货车时有3种方案.
    设计方案分别为:
    ①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车3辆,乙车3辆;
    (3)3种方案的运费分别为:
    ①2×300+6×360=2960(元);
    ②3×300+5×360=3000(元);
    ③3×300+3×360=3030(元);
    ∴方案①运费最少,最少运费是2960元.
    答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.
    考点:1.一元一次不等式组的应用;2.二元一次方程组的应用.
    16、(1)如图所示:D点的坐标是(0,﹣4);(2)线段AC的长为,AD的长为2,BD的长为;(3)△ABD为 直角三角形,四边形ADBC面积是1.
    【解析】
    (1)根据题意画出图形,进一步得到D点的坐标;
    (2)根据勾股定理可求线段AC的长,AD的长,BD的长;
    (3)根据勾股定理的逆定理可得△ABD为直角三角形,再根据矩形的面积公式即可求解.
    【详解】
    (1)如图所示:D点的坐标是(0,﹣4);
    (2)线段AC的长为 AD的长为BD的长为
    (3)∵

    ∴△ABD为 直角三角形,四边形ADBC面积是
    考查了勾股定理,勾股定理的逆定理,矩形的面积,勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    17、(1)5;(2)正确,证明详见解析;(3)存在,有四种情况,面积分别是:,,,
    【解析】
    (1)根据勾股定理计算BC的长度,
    (2)根据对角线互相垂直平分的四边形是菱形判断,
    (3)有四种情况,作辅助线,将四边形分成两个三角形和一个四边形或两个三角形,相加可得结论.
    【详解】
    (1)∵BD⊥CD
    ∴∠BDC=90°,BC>CD
    ∵在“准等边四边形”ABCD中,BC≠AB,
    ∴AB=AD=CD=3,
    ∵BD=4,
    ∴BC=,
    (2)正确.
    如图所示:
    ∵AB=AD
    ∴ΔABD是等腰三角形.
    ∵AC⊥BD.
    ∴AC垂直平分BD.
    ∴BC=CD
    ∴CD =AB=AD=BC
    ∴四边形 ABCD是菱形.
    (3)存在四种情况,
    如图2,四边形ABPC是“准等边四边形”,过C作于F,则,
    ∵EP是AB的垂直平分线,
    ∴ ,
    ∴四边形AEFC是矩形,
    在中, ,
    ∴ ,





    如图4,四边形ABPC是“准等边四边形”,
    ∵ ,
    ∴是等边三角形,
    ∴ ;
    如图5,四边形ABPC是“准等边四边形”,

    ∵ ,PE是AB的垂直平分线,
    ∴ E是AB的中点,
    ∴ ,


    如图6,四边形ABPC是“准等边四边形”,过P作于F,连接AP,
    ∵,
    ∴,

    本题考查了四边形综合题,矩形和菱形的判定和性质,“准等边四边形”的定义等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形和矩形解题,学会用分类讨论的思想解决问题,难度较大,属于中考压轴题.
    18、(1) (2) (3)见解析
    【解析】
    (1)利用中位数的定义确定的值即可; (2)用40≤x<45范围内的人数除以总人数乘以周角的度数即可; (3)利用平均数、中位数的意义列举即可.
    【详解】
    解:(1)∵共20人,
    ∴中位数是第10或11人的平均数,为42分和43分,
    即: ,
    故答案为:42.5;
    (2)两组中40≤x<45共有7+7=14人,
    所以40≤x<45的圆心角为,
    故答案为:.
    (3)∵41<41.8 ∴从平均数角度看乙班成绩好;
    ∵41<42.5,
    ∴从中位数角度看乙班成绩好.
    本题考查了扇形统计图的知识,解题的关键是仔细的读题并从中进一步整理出解题的有关信息.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、x>1
    【解析】
    利用待定系数法可得直线AB的解析式为y=x−1,依据当y>0时,x−1>0,即可得到x的取值范围.
    【详解】
    解:由A(1,0),B(0,﹣1),可得直线AB的解析式为y=x﹣1,
    ∴当y>0时,x﹣1>0,
    解得x>1,
    故答案为:x>1.
    本题主要考查了一次函数与不等式之间的联系,直线上任意一点的坐标都满足函数关系式y=kx+b,解题关键是求出直线解析式.
    20、2.5×10-1
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    0.0000025=2.5×10-1,
    故答案为2.5×10-1.
    本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    21、1.
    【解析】
    草坪的面积等于矩形的面积-两条路的面积+两条路重合部分的面积,由此计算即可.
    【详解】
    解:S=32×24-2×24-2×32+2×2=1(m2).
    故答案为:1.
    本题考查了生活中的平移现象,解答本题的关键是求出草坪总面积的表达式.
    22、1
    【解析】
    根据方差的性质可知,数据中的每个数据都扩大2倍,则方差扩大4倍,即可得出答案.
    【详解】
    解:∵将这组数据中的每个数据都扩大2倍,所得到的一组数据的方差将扩大4倍,
    ∴新数据的方差是4×4=1,
    故答案为:1.
    本题考查了方差:一般地设有n个数据,x1,x2,…xn,若每个数据都扩大相同的倍数后,方差则变为这个倍数的平方倍.
    23、1
    【解析】
    直接利用二次根式的除法运算法则得出即可.
    【详解】
    解:÷==1.
    故答案为1.
    本题考查二次根式的除法运算,根据二次根式的运算法则得出是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)108 (2)110.4
    【解析】
    (1)根据平均数的计算公式计算即可.
    (2)根据权重乘以每个时期的成绩总和为总评成绩计算即可.
    【详解】
    (1)根据平均数的计算公式可得:
    因此小明这学期的数学平时平均成绩为108
    (2)根据题意可得:
    因此小明这学期的数学总评成绩110.4
    本题主要考查数据统计方面的知识,关键要熟悉概念和公式,应当熟练掌握.
    25、解:(1)平均数是25人,众数是25人,中位数是26人;(2)1250 人.
    【解析】
    (1)根据平均、众数和中位数的概念分别求解即可;
    (2)用平均数乘以发车班次就是乘客的总人数.
    【详解】
    解:(1)平均数=(16+25+18+1+25+30+28+29+25+1)=25(人),
    这组数据按从小到大的顺序排列为:16,18,25,25,25,1,1,28,29,30,
    中位数为:;
    众数为:25;
    (2)50×25=1250(人);
    答:在高峰时段从总站乘该路车出行的乘客共有1250人.
    本题考查了众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.
    26、(1)90°(1)1.4
    【解析】
    (1)连接CE,根据线段垂直平分线的性质转化线段BE到△AEC中,利用勾股定理的逆定理可求∠A度数;
    (1)设AE=x,则AC可用x表示,在Rt△ABC中利用勾股定理得到关于x的方程求解AE值.
    【详解】
    (1)连接CE,∵D是BC的中点,DE⊥BC,
    ∴CE=BE.
    ∵BE1−AE1=AC1,
    ∴AE1+AC1=CE1.
    ∴△AEC是直角三角形,∠A=90°;
    (1)在Rt△BDE中,BE==2.
    所以CE=BE=2.
    设AE=x,则在Rt△AEC中,AC1=CE1−AE1,
    所以AC1=12−x1.
    ∵BD=4,
    ∴BC=1BD=3.
    在Rt△ABC中,根据BC1=AB1+AC1,
    即64=(2+x)1+12−x1,
    解得x=1.4.
    即AE=1.4.
    本题主要考查了勾股定理及其逆定理,解题的关键是利用勾股定理求解线段长度,选择直角三角形借助勾股定理构造方程是解这类问题通用方法.
    题号





    总分
    得分

    32
    35
    46
    23
    41
    49
    37
    41
    36
    41
    37
    44
    39
    46
    46
    41
    50
    43
    44
    49

    25
    34
    43
    46
    35
    41
    42
    46
    44
    42
    47
    45
    42
    34
    39
    47
    49
    48
    45
    42
    平均数(分)
    中位数(分)
    众数(分)

    41
    41

    41.8
    42
    测试
    类别
    平 时
    期中
    期末
    测试1
    测试2
    测试4
    课题学习
    112
    110
    成绩(分)
    106
    102
    115
    109

    相关试卷

    广东省深圳市罗芳中学2025届数学九上开学质量跟踪监视模拟试题【含答案】:

    这是一份广东省深圳市罗芳中学2025届数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省深圳市光明区2025届数学九上开学质量跟踪监视试题【含答案】:

    这是一份广东省深圳市光明区2025届数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    北京大附中2025届数学九上开学质量跟踪监视模拟试题【含答案】:

    这是一份北京大附中2025届数学九上开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map