广东省英德市市区2024-2025学年数学九上开学经典试题【含答案】
展开
这是一份广东省英德市市区2024-2025学年数学九上开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知在一个样本中,41个数据分别落在4个组内,第一、二、四组数据个数分别为5、12、8,则第三组的频数为( )
A.1.375B.1.6C.15D.25
2、(4分)下列有理式中的分式是( )
A.B.C.D.
3、(4分)下列各式正确的是( )
A.B.
C.D.
4、(4分)A、B两地相距20千米,甲、乙两人都从A地去B地,图中和分别表示甲、乙两人所走路程(千米)与时刻(小时)之间的关系.下列说法:
①乙晚出发1小时;
②乙出发3小时后追上甲;
③甲的速度是4千米/小时;
④乙先到达B地.
其中正确的个数是( )
A.1B.2C.3D.4
5、(4分)下列各组数作为三角形的边长,其中不能构成直角三角形的是( )
A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,12
6、(4分)下列图形中既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
7、(4分)如图,在平面直角坐标系中,的顶点在轴上,定点的坐标为,若直线经过点,且将平行四边形分割成面积相等的两部分,则直线的表达式( )
A.B.C.D.
8、(4分)已知点是平行四边形内一点(不含边界),设.若,则( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,,垂足为,是中线,将沿直线BD翻折后,点C落在点E,那么AE为_________.
10、(4分)某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 分.
11、(4分)如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(-10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是 ______ .
12、(4分)如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.
13、(4分)函数y=36x-10的图象经过第______象限.
三、解答题(本大题共5个小题,共48分)
14、(12分)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,则乙每分钟打______个字.
15、(8分)若x、y都是实数,且y=++,求x2y+xy2的值.
16、(8分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?
17、(10分)用无刻度的直尺按要求作图,请保留画图痕迹,不需要写作法.
(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.
(2)如图2,在8×6的正方形网格中,请用无刻度直尺画一个与△ABC面积相等,且以BC为边的平行四边形,顶点在格点上.
18、(10分)如图,在四边形ABCD中,,,,,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转得到PQ,过A点,D点分别作BC的垂线,垂足分别为M,N.
求AM的值;
连接AC,若P是AB的中点,求PE的长;
若点Q落在AB或AD边所在直线上,请直接写出BP的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一个矩形的长比宽多1cm,面积是132cm2,则矩形的长为________cm.
20、(4分)将正比例函数y=﹣2x的图象沿y轴向上平移5个单位,则平移后所得图象的解析式是_____.
21、(4分)分解因式:a3﹣2a2+a=________.
22、(4分)如图,平行四边形ABCD中,点E为BC边上一点,AE和BD交于点F,已知△ABF的面积等于 6,△BEF的面积等于4,则四边形CDFE的面积等于___________
23、(4分)在一次身体的体检中,小红、小强、小林三人的平均体重为42kg,小红、小强的平均体重比小林的体重多6kg,小林的体重是___kg.
二、解答题(本大题共3个小题,共30分)
24、(8分)市教育局为了解本市中学生参加志愿者活动情况,随机拍查了某区部分八年级学生一学年来参加志愿者活动的次数,并用得到的数据绘制了如下两幅不完整的统计图.
(1)求参加这次调查统计的学生总人数及这个区八年级学生平均每人一学年来参加志愿者活动的次数;
(2)在这次抽样调查中,众数和中位数分别是多少?
(3)如果该区共有八年级学生人,请你估计“活动次数不少于次”的学生人数大约多少人.
25、(10分)计算:
(1) (2)(4)÷2
26、(12分)如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.
(1)求证:四边形AECF是菱形;
(2)若AC=4,BE=1,直接写出菱形AECF的边长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
解:第三组的频数=41-5-12-8=15
故选:C.
本题考查频数,掌握概念是解题关键.
2、D
【解析】
根据分式的定义逐项分析即可.
【详解】
A、B、C是整式;D的分母含字母,是分式.
故选D.
本题主要考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.注意π不是字母,是常数,所以分母中含π的代数式不是分式,是整式.
3、C
【解析】
根据分式的性质,分式的加减,可得答案.
【详解】
A、c=0时无意义,故A错误;
B、分子分母加同一个整式,分式的值发生变化,故B错误;
C、分子分母都除以同一个不为零的整式,分式的值不变,故C符合题意;
D、,故D错误;
故选C.
本题考查了分式的性质及分式的加减,利用分式的性质及分式的加减是解题关键.
4、C
【解析】
试题分析:根据函数的图像直接读取信息:①乙比甲晚出发1小时,正确;
②乙应出发2小时后追上甲,错误;
③甲的速度为12÷3=4(千米/小时),正确;甲到达需要20÷4=5(小时);乙的速度为12÷2=6(千米/小时),SI④乙到达需要的时间为20÷6=3(小时),即乙在甲出发4小时到达,甲5小时到达,故乙比甲先到.正确.
故选C
考点:一次函数的图像与性质
5、D
【解析】
试题分析:A、∵,∴能构成直角三角形;B、,∴能构成直角三角形;C、,∴能构成直角三角形; D、∵,∴不能构成直角三角形.故选D.
考点:勾股数.
6、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、是轴对称图形,也是中心对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误,
故选C.
本此题考查了轴对称及中心对称图形的判断,解答本题的关键是掌握中心对称图形与轴对称图形的概念.
7、A
【解析】
由直线将平行四边形分割成面积相等的两部分可知直线必过平行四边形对角线的交点,交点即为BO中点,定点的坐标为,故其中点为,可用待定系数法确定直线DE的表达式.
【详解】
解:由直线将平行四边形分割成面积相等的两部分可知直线必过平行四边形对角线的交点,交点即为BO中点,定点的坐标为,故其中点为,设直线的表达式为,将点,代入得:
解得
所以直线的表达式为
故答案为:A
本题主要考查了平行四边形中心对称的性质及待定系数法求直线表达式,明确直线过平行四边形对角线的交点是解题的关键.
8、D
【解析】
依据平行四边形的性质以及三角形内角和定理,可得θ2-θ1=10°,θ4-θ3=30°,两式相加即可得到θ2+θ4-θ1-θ3=40°.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD=60°,
∴∠BAM=60°-θ1,∠DCM=60°-θ3,
∴△ABM中,60°-θ1+θ2+110°=180°,即θ2-θ1=10°①,
△DCM中,60°-θ3+θ4+90°=180°,即θ4-θ3=30°②,
由②+①,可得(θ4-θ3)+(θ2-θ1)=40°,
;
故选:D.
本题主要考查了平行四边形的性质以及三角形内角和定理等知识;熟练掌握平行四边形的对角相等是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形,先证明△ADM≌△CDB,在RT△BMN中利用勾股定理求出BM,再证明四边形BCDE是菱形,AE=2OD,即可解决问题.
【详解】
解:如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形.
∵AB=AC=4,,
∴CH=1,AH=NB=
,BC=2,
∵AM∥BC,
∴∠M=∠DBC,
在△ADM和△CDB中,
,
∴△ADM≌△CDB(AAS),
∴AM=BC=2,DM=BD,
在RT△BMN中,∵BN=,MN=3,
∴,
∴BD=DM=,
∵BC=CD=BE=DE=2,
∴四边形EBCD是菱形,
∴EC⊥BD,BO=OD=,EO=OC,
∵AD=DC,
∴AE∥OD,AE=2OD=.
故答案为.
本题考查翻折变换、全等三角形的判定和性质、菱形的判定和性质、三角形的中位线定理、勾股定理等知识,解题的关键是添加辅助线构造全等三角形,学会转化的数学数学,利用三角形中位线发现AE=2OD,求出OD即可解决问题,属于中考常考题型.
10、88
【解析】
试题分析:根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可:
∵笔试按60%、面试按40%计算,
∴总成绩是:90×60%+85×40%=88(分).
11、(-4,3),或(-1,3),或(-9,3)
【解析】
∵A(-10,0),C(0,3),
, .
∵点D是OA的中点,
.
当 时, , .
当 时,,
,
当 时, , .
当 时,不合题意.
故答案有三种情况.
【点睛】本题考查了矩形的性质,等腰三角形的概念,平面直角坐标系中点的坐标及分类 的思想.涉及等腰三角形的计算,不管是角的计算还是腰的计算,一般都要进行分类讨论.像本题就要分四种情况进行计算.
12、
【解析】
试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.
∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,
∴S△ABC=2S△BCE,S△ABD=2S△ADE,
∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,
∴AC=2BD,
∴OD=2OC.
∵CD=k,
∴点A的坐标为(,3),点B的坐标为(-,-),
∴AC=3,BD=,
∴AB=2AC=6,AF=AC+BD=,
∴CD=k=.
【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.
13、【解析】
根据y=kx+b(k≠0,且k,b为常数),当k>0,b<0时,函数图象过一、三、四象限.
【详解】
解:因为函数中,
,,
所以函数图象过一、三、四象限,
故答案为:一、三、四.
此题主要考查了一次函数的性质,同学们应熟练掌握根据函数式判断出函数图象的位置,这是考查重点内容之一.
三、解答题(本大题共5个小题,共48分)
14、45
【解析】
设乙每分钟打字x个,甲每分钟打个,根据题意可得:,去分母可得:
,解得,经检验可得:,故答案为:45.
15、1+1.
【解析】
根据二次根式有意义的条件可得x=2,进而可得y的值,然后代入求值即可.
【详解】
由题意得:,
解得:x=2,
则y=,
x2y+xy2=xy(x+y)=2(2+)=1+1.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
16、(1)该一次函数解析式为y=x+1;(2)离加油站的路程是10千米.
【解析】
(1)分析题意,首先根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,用总路程减去剩余油量为8升时行驶的路程即可解答本题。
【详解】
(1)设该一次函数解析式为y=kx+b,
将(150,45)、(0,1)代入y=kx+b中,得,
解得:,
∴该一次函数解析式为y=x+1.
(2)当y=x+1=8时,
解得x=2.
即行驶2千米时,油箱中的剩余油量为8升.
530-2=10千米,
油箱中的剩余油量为8升时,距离加油站10千米.
∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
本题主要考查的是一次函数的应用,解题的关键是掌握待定系数法.
17、(1)详见解析;(2)详见解析
【解析】
(1)连接AB,EF,交点设为P,射线AP即为所求;
(2)根据平行四边形的面积公式和三角形的面积公式可得,平行四边形的BC的对边到BC的距离等于A到BC的距离的一半,然后根据平行四边形的对边相等解答.
【详解】
解:(1)连接AB,EF,交点设为P,射线AP即为所求;
(2)如图所示,平行四边形MBCN即为所求.
本题考查了矩形的性质和平行四边形的判定,熟练掌握性质定理和网格特点是解题关键.
18、(1)12;(2)10;(3)PB的值为或.
【解析】
作等腰梯形的双高,把问题转化为矩形,全等三角形即可解决问题;
如图2中,连接利用勾股定理求出AC,再利用三角形的中位线定理求出PE;
分两种情形分别讨论求解即可解决问题.
【详解】
如图1中,作用M,于N.
,
,
,
四边形AMND是矩形,
,
,
≌,
,
,,
,
,
如图2中,连接AC.
在中,,
,,
,
如图3中,当点Q落在直线AB上时,
∽,
,
,
.
如图4中,当点Q在DA的延长线上时,作交DA的延长线于H,延长HP交BC于G.
设,则.
,
,
,,
,
≌,
,
,
.
综上所述,满足条件的PB的值为或.
本题考查四边形综合题、等腰梯形的性质、全等三角形的判定和性质、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
设矩形的宽为xcm,根据矩形的面积=长×宽列出方程解答即可.
【详解】
设矩形的宽为xcm,依题意得:
x(x+1)=132,
整理,得(x+1)(x-11)=0,
解得x1=-1(舍去),x2=11,
则x+1=1.
即矩形的长是1cm.
故答案为:1.
本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
20、y=-2x+1
【解析】
根据上下平移时只需让b的值加减即可,进而得出答案即可.
解:原直线的k= -2,b=0;向上平移1个单位得到了新直线,
那么新直线的k= -2,b=0+1=1.
故新直线的解析式为:y= -2x+1.
故答案为y= -2x+1.
“点睛”此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.
21、a(a﹣1)1
【解析】
试题分析:此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.a3﹣1a1+a=a(a1﹣1a+1)=a(a﹣1)1.故答案为a(a﹣1)1.
考点:提公因式法与公式法的综合运用.
22、1
【解析】
利用三角形面积公式得到AF:FE=3:2,再根据平行四边形的性质得到AD∥BE,S△ABD=S△CBD,则可判断△AFD∽△EFB,利用相似的性质可计算出S△AFD=9,所以S△ABD=S△CBD=15,然后用△BCD的面积减去△BEF的面积得到四边形CDFE的面积.
【详解】
解:∵△ABF的面积等于6,△BEF的面积等于4,
即S△ABF:S△BEF=6:4=3:2,
∴AF:FE=3:2,
∵四边形ABCD为平行四边形,
∴AD∥BE,S△ABD=S△CBD,
∴△AFD∽△EFB,
∴,
∴S△AFD=×4=9,
∴S△ABD=S△CBD=6+9=15,
∴四边形CDFE的面积=15-4=1.
故答案为1.
本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质.
23、1.
【解析】
可设小林的体重是xkg,根据平均数公式列出方程计算即可求解.
【详解】
解:设小林的体重是xkg,依题意有
x+2(x+6)=42×3,
解得x=1.
故小林的体重是1kg.
故答案为:1.
考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.
二、解答题(本大题共3个小题,共30分)
24、(1)1000,4.2;(2)众数是次,中位数是次;(3)1950
【解析】
(1)用350÷35%即可求出参加这次调查的学生总人数;再利用平均数即可求出这个区八年级学生平均每人一年来参加志愿者活动的次数;
(2)根据中位数、众数的定义解答即可;
(3)先求出这次调查样本中参加活动次数不少于次的概率,然后再乘以总体即可.
【详解】
解:(1)(人).
次人数为(人);
平均次数为:(次).
(2)众数是次,中位数是次.
(3)(人).
本题考查的是条形统计图和扇形统计图的综合运用。读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
25、(1)4+5(2)2+2
【解析】
(1)先进行乘法运算,然后把化简后合并即可.
(2)运用实数运算、二次根式化简,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
(1)原式=
(2)
此题考查二次根式的混合运算,实数运算、二次根式化简,掌握运算法则是解题关键
26、(1)证明见解析;(2)
【解析】
(1)根据正方形的性质和菱形的判定解答即可;
(2)根据正方形和菱形的性质以及勾股定理解答即可.
【详解】
(1)证明:∵正方形ABCD的对角线AC,BD相交于点O,
∴OA=OC,OB=OD,
AC⊥BD.
∵BE=DF,
∴OB+BE=OD+DF,即OE=OF.
∴四边形AECF是平行四边形.
∵AC⊥EF,
∴四边形AECF是菱形.
(2)∵AC=4,
∴OA=2,
∴OB=2,
∴OE=OB+BE=3,
∴AE= (勾股定理)
此题考查了菱形的性质和判定,解题时要注意选择适宜的判定方法.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份广东省清远市英德市2024-2025学年九上数学开学教学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份甘肃省广河县2024-2025学年九上数学开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年菏泽市九上数学开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。