终身会员
搜索
    上传资料 赚现金
    新高考数学之圆锥曲线综合讲义第2讲点差法(原卷版+解析)
    立即下载
    加入资料篮
    新高考数学之圆锥曲线综合讲义第2讲点差法(原卷版+解析)01
    新高考数学之圆锥曲线综合讲义第2讲点差法(原卷版+解析)02
    新高考数学之圆锥曲线综合讲义第2讲点差法(原卷版+解析)03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学之圆锥曲线综合讲义第2讲点差法(原卷版+解析)

    展开
    这是一份新高考数学之圆锥曲线综合讲义第2讲点差法(原卷版+解析),共8页。试卷主要包含了在中,是、的等差中项,且,,已知椭圆的一个顶点为,离心率为等内容,欢迎下载使用。

    1.过椭圆内一点引一条弦,使弦被点平分,求这条弦所在直线的方程.
    2.已知中心在原点,一焦点为的椭圆被直线截得的弦的中点横坐标为,求此椭圆的方程.
    3.已知曲线,试确定的取值范围,使得对于直线,曲线上总有不同两点关于该直线对称.
    4.已知椭圆过点,,且与椭圆有相同的焦点.
    (1)求椭圆的标准方程;
    (2)若椭圆上存在、两点关于直线对称,求实数的取值范围.
    5.在中,是、的等差中项,且,.
    (1)求顶点的轨迹的方程;
    (2)若上存在两点关于直线对称,求实数的取值范围.
    6.已知双曲线,经过点能否作一条直线,使直线与双曲线交于、,且是线段的中点,若存在这样的直线,求出它的方程;若不存在,说明理由.
    7.已知椭圆的一个顶点为,离心率为.
    (1)求椭圆的方程;
    (2)经过点能否作一条直线,使直线与椭圆交于,两点,且使得是线段的中点,若存在,求出它的方程;若不存在,说明理由.
    8.已知椭圆的一个焦点与抛物线的焦点重合,点,在上
    (Ⅰ)求的方程;
    (Ⅱ)直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为,证明:的斜率与直线的斜率的乘积为定值.
    9.已知椭圆的离心率是,直线被椭圆截得的线段长为.
    (Ⅰ)求椭圆的方程;
    (Ⅱ)若椭圆两个不同的点,关于直线对称,求实数的取值范围.
    第2讲 点差法
    一.解答题(共9小题)
    1.过椭圆内一点引一条弦,使弦被点平分,求这条弦所在直线的方程.
    【解答】解:设直线与椭圆的交点为,、,
    为的中点

    又、两点在椭圆上,则,
    两式相减得
    于是
    ,即,
    故所求直线的方程为,即.
    2.已知中心在原点,一焦点为的椭圆被直线截得的弦的中点横坐标为,求此椭圆的方程.
    【解答】解:椭圆被直线截得的弦的中点横坐标为,
    可得宗坐标为,可得中点.
    设椭圆标准方程为:.
    设直线与椭圆相交于点,,,.
    则,,相减可得:,
    又,,,
    ,又,
    联立解得,.
    椭圆的标准方程为:.
    3.已知曲线,试确定的取值范围,使得对于直线,曲线上总有不同两点关于该直线对称.
    【解答】解:设椭圆上关于直线对称的点,,,,
    则根据对称性可知线段被直线垂直平分.
    可得直线的斜率,
    直线与椭圆有两个交点,且的中点,在直线,
    故可设直线 的方程为,
    联立方程组,
    整理可得
    ,,
    △,

    ,,代入,


    的范围就是,.
    4.已知椭圆过点,,且与椭圆有相同的焦点.
    (1)求椭圆的标准方程;
    (2)若椭圆上存在、两点关于直线对称,求实数的取值范围.
    【解答】解:(1)由椭圆,可得,可得焦点.
    设椭圆的标准方程为,
    则,解得,.
    椭圆的标准方程为.
    (2)设直线的方程为:,,,,,线段的中点,.
    联立,化为:.
    △,化为:.
    ,.
    ,.

    解得,代入.
    可得.
    实数的取值范围是.
    5.在中,是、的等差中项,且,.
    (1)求顶点的轨迹的方程;
    (2)若上存在两点关于直线对称,求实数的取值范围.
    【解答】解:(1)由题意,,
    顶点的轨迹是以,为焦点的椭圆(除去,,共线),且,,

    顶点的轨迹的方程;
    (2)解:设关于直线对称的点为,,则的方程为,
    与椭圆方程联立,消去整理得:.
    即.
    由△,得.
    设,,,,
    则,,
    再设的中点为,,
    则,
    又在上,得,
    在上,得,即.
    则,得.
    6.已知双曲线,经过点能否作一条直线,使直线与双曲线交于、,且是线段的中点,若存在这样的直线,求出它的方程;若不存在,说明理由.
    【解答】解:设过点的直线方程为或
    (1)当存在时有
    得 (1)
    当直线与双曲线相交于两个不同点,则必有
    △,
    又方程(1)的两个不同的根是两交点、的横坐标
    又为线段的中点

    ,使但使△
    因此当时,方程(1)无实数解
    故过点与双曲线交于两点、且为线段中点的直线不存在.
    (2)当时,直线经过点但不满足条件,
    综上,符合条件的直线不存在
    7.已知椭圆的一个顶点为,离心率为.
    (1)求椭圆的方程;
    (2)经过点能否作一条直线,使直线与椭圆交于,两点,且使得是线段的中点,若存在,求出它的方程;若不存在,说明理由.
    【解答】解:(1)椭圆的顶点为,

    又,


    椭圆的方程为:.
    (2)当过点的直线斜率不存在时,显然不成立,
    设直线的斜率为,则其方程为:

    联立方程组,
    消去并整理,得

    △,
    整理,得



    且点是线段的中点,


    故存在这样的直线,此时,直线方程为:

    即,
    存在符合条件的直线,它的方程.
    8.已知椭圆的一个焦点与抛物线的焦点重合,点,在上
    (Ⅰ)求的方程;
    (Ⅱ)直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为,证明:的斜率与直线的斜率的乘积为定值.
    【解答】解:(Ⅰ)抛物线的焦点为,由题意可得:,即,
    又点,在椭圆上,可得,解得:,,

    的方程:;(5分)
    (Ⅱ)证明:设直线的方程为,,,,,(6分)
    ,整理得:,
    由韦达定理可知:,(8分)
    即有的中点的横坐标为,纵坐标为,(10分)
    直线的斜率为,即有,
    故的斜率与直线的斜率的乘积为定值.(12分)
    9.已知椭圆的离心率是,直线被椭圆截得的线段长为.
    (Ⅰ)求椭圆的方程;
    (Ⅱ)若椭圆两个不同的点,关于直线对称,求实数的取值范围.
    【解答】解:(Ⅰ)由题设得,椭圆过点,
    所以,
    解得,,,
    所以椭圆的方程为;
    (Ⅱ)由(Ⅰ)易得知,可设直线的方程为.
    由消去得
    因为直线与椭圆有两个不同交点,
    所以①
    设,,,,由韦达定理知,,
    于是线段的中点坐标为,
    将其代入直线,解得②
    将②代入①,得,
    解得或.
    因此,所求实数的取值范围.
    相关试卷

    新高考数学二轮复习圆锥曲线重难点提升专题13 点差法在圆锥曲线中的应用(2份打包,原卷版+解析版): 这是一份新高考数学二轮复习圆锥曲线重难点提升专题13 点差法在圆锥曲线中的应用(2份打包,原卷版+解析版),文件包含新高考数学二轮复习圆锥曲线重难点提升专题13点差法在圆锥曲线中的应用原卷版doc、新高考数学二轮复习圆锥曲线重难点提升专题13点差法在圆锥曲线中的应用解析版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    高考数学微专题集专题12定比点差法及其应用微点5定比点差法综合训练(原卷版+解析): 这是一份高考数学微专题集专题12定比点差法及其应用微点5定比点差法综合训练(原卷版+解析),共38页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    高考数学微专题集专题12定比点差法及其应用微点3定比点差法综合应用(二)(原卷版+解析): 这是一份高考数学微专题集专题12定比点差法及其应用微点3定比点差法综合应用(二)(原卷版+解析),共44页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新高考数学之圆锥曲线综合讲义第2讲点差法(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map