广西河池市2024-2025学年数学九上开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若与互为相反数,则
A.B.C.D.
2、(4分)4名选手在相同条件下各射靶10次,统计结果如下表.表现较好且更稳定的是( )
A.甲B.乙C.丙D.丁
3、(4分)如图,在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于点E,交BC于点F,连接AF,则∠AFC的度数( )
A.
B.
C.
D.
4、(4分)经过多边形一个角的两边剪掉这个角,则得到的新多边形的外角和( )
A.比原多边形多B.比原多边形少C.与原多边形外角和相等D.不确定
5、(4分)某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )
A.50.5~60.5 分B.60.5~70.5 分C.70.5~80.5 分D.80.5~90.5 分
6、(4分)下列各式中正确的是( )
A.B.C.=a+bD.=-a-b
7、(4分)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选( ).
A.甲B.乙C.丙D.丁
8、(4分)下列二次根式中,与是同类二次根式的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)根据图中的程序,当输入x=2时,输出结果y=________.
10、(4分)一种盛饮料的圆柱形杯子(如图),测得它的内部底面半径为2.5 cm,高为12 cm,吸管放进杯子里,杯口外面至少要露出5.2 cm,则吸管的长度至少为_______cm.
11、(4分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴正半轴上,边AB、OA(AB>OA)的长分别是方程x−11x+24=0的两个根,D是AB上的一动点(不与A.B重合).AB=8,OA=3.若动点D满足△BOC与AOD相似,则直线OD的解析式为____.
12、(4分)如图,在平面直角坐标系xOy中,四边形0ABC是平行四边形,且A(4,0),B(6,2),则直线AC的解析式为___________.
13、(4分)如果正数m的平方根为x+1和x-3,则m的值是_____
三、解答题(本大题共5个小题,共48分)
14、(12分)列方程或方程组解应用题:
为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)
15、(8分)如图,把矩形OABC放入平面直角坐标系xO中,使OA、OC分别落在x、y轴的正半轴上,其中AB=15,对角线AC所在直线解析式为y=﹣x+b,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.
(1)求点B的坐标;
(2)求EA的长度;
(3)点P是y轴上一动点,是否存在点P使得△PBE的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.
16、(8分)已知关于x的一次函数y=(3-m)x+m-5的图象经过第二、三、四象限,求实数m的取值范围.
17、(10分)已知等腰三角形的周长为, 底边长是腰长的函数.
写出这个函数关系式;
求自变量的取值范围;
画出这个函数的图象.
18、(10分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:
①金卡售价600元/张,每次凭卡不再收费.
②银卡售价150元/张,每次凭卡另收10元.
暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:
根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择__________.
20、(4分)若m+n=3,则2m2+4mn+2n2-6的值为________.
21、(4分)若分式 有意义,则的取值范围是_______________ .
22、(4分)如图,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,若图1正方形中MN=1,则CD=____.
23、(4分)命题“两直线平行,同位角相等”的逆命题是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为_____.
25、(10分)某公司10名销售员,去年完成的销售额情况如表:
(1)求销售额的平均数、众数、中位数;
(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?
26、(12分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(1)参加比赛有_____名运动员,图①中a的值是_____,补全条形统计图.
(2)统计的这组初赛成绩数据的众数是_____,中位数是_____,平均数是_____.
(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据根式的性质和绝对值的性质,要使与互为相反数,则可得和,因此可计算的的值.
【详解】
根据根式的性质和绝对值的性质可得:
因此解得
所以可得
故选A.
本题主要考查根式和绝对值的性质,关键在于根式要大于等于零,绝对值要大于等于零.
2、B
【解析】
先比较平均数,乙、丁的平均成绩好且相等,再比较方差即可解答.
【详解】
解:∵乙、丁的平均成绩大于甲、丙,且乙的方差小于丁的方差,
∴表现较好且更稳定的是乙,
故选:B.
本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
3、C
【解析】
先由等腰三角形的性质求出∠B的度数,再由垂直平分线的性质可得出∠BAF=∠B,由三角形内角与外角的关系即可解答.
【详解】
解:∵AB=AC,∠BAC=120°,
∴∠B=(180°-120°)÷2=30°,
∵EF垂直平分AB,
∴BF=AF,
∴∠BAF=∠B=30°,
∴∠AFC=∠BAF+∠B=60°.
故选:C.
本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.也考查了等腰三角形的性质及三角形外角的性质.
4、C
【解析】
根据外角和的定义即可得出答案.
【详解】
多边形外角和均为360°,故答案选择C.
本题考查的是多边形的外角和,比较简单,记住多边形的外角和均为360°.
5、C
【解析】
分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.
详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.
点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
6、D
【解析】
根据分式的性质:分子分母同时扩大或缩小相同倍数,值不变,和分式的通分即可解题.
【详解】
A. ,故A错误,
B. , 故B错误
C. a+b,这里面分子不能用平方差因式分解,
D. =-a-b,正确
故选D.
本题考查了分式的运算性质,属于简单题,熟悉概念是解题关键.
7、C
【解析】
试题分析:丙的平均数==9,丙的方差= [1+1+1=1]=0.4,
乙的平均数==8.2,
由题意可知,丙的成绩最好,
故选C.
考点:1、方差;2、折线统计图;3、加权平均数
8、C
【解析】
判断是否为同类二次根式必须先化为最简二次根式,若化为最简二次根式后,被开方数相同则为同类二次根式.
【详解】
解:A、,与不是同类二次根式;
B、,与不是同类二次根式;
C、,与是同类二次根式;
D、,与不是同类二次根式;
故选C.
主要考查如何判断同类二次根式,需注意的是必需先化为最简二次根式再进行判断.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
∵x=2时,符合x>1的条件,
∴将x=2代入函数y=−x+4得:y=2.
故答案为2.
10、18.2
【解析】
由于吸管、圆柱形杯内部底面直径与杯壁正好构成直角三角形,故可先利用勾股定理求出AC的长,进而可得出结论.
【详解】
解:如图;杯内的吸管部分长为AC,杯高AB=12cm,杯底直径BC=5cm;
Rt△ABC中,AB=12cm,BC=5cm;
由勾股定理得:;
故吸管的长度最少要:13+5.2=18.2(cm).
故答案为:18.2.
本题考查勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.
11、y=−x
【解析】
分两种情况:△BOC∽△DOA和△BOC∽△ODA,由相似三角形的对应边成比例求得点D的坐标,由待定系数法求得直线OD的解析式;
【详解】
若△BOC∽△DOA.
则
即
所以AD= ,
若△BOC∽△ODA,可得AD=8(与题意不符,舍去)
设直线OD解析式为y=kx,则3=−k,
即k=− ,
直线OD的解析式为y=−x;
此题考查一次函数的性质,解题关键在于利用相似三角形的性质求解.
12、y=-x+1
【解析】
根据平行四边形的性质得到OA∥BC,OA=BC,由已知条件得到C(2,2),设直线AC的解析式为y=kx+b,列方程组即可得到结论.
【详解】
解:∵四边形OABC是平行四边形,
∴OA∥BC,OA=BC,
∵A(1,0),B(6,2),
∴C(2,2),
设直线AC的解析式为y=kx+b,
∴,
解得:,
∴直线AC的解析式为y=-x+1,
故答案为:y=-x+1.
本题考查了平行四边形的性质、坐标与图形性质以及利用待定系数法求一次函数的解析式,解题的关键是求出其中心对称点的坐标.
13、4
【解析】
根据数m的平方根是x+1和x-3,可知x+1和x-3互为相反数,据此即可列方程求得x的值,然后根据平方根的定义求得m的值.
【详解】
由题可得(x+1)+(x-3)=0,解得x=1,则m=(x+1)2=22=4.
所以m的值是4.
本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
三、解答题(本大题共5个小题,共48分)
14、3.2克.
【解析】
设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.
【详解】
解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:,
解得:x=3.2,
经检验:x=3.2是原分式方程的解,且符合题意.
答:A4薄型纸每页的质量为3.2克.
本题考查分式方程的应用,掌握题目中等量关系是关键,注意分式方程结果要检验.
15、(1)B(9,11);(2)1;(3)存在,P(0,)
【解析】
(1)根据点C的坐标确定b的值,利用待定系数法求出点A坐标即可解决问题;
(2)在Rt△BCD中,BC=9,BD=AB=11,CD==12,OD=11﹣12=3,设DE=AE=x,在Rt△DEO中,根据DE2=OD2+OE2,构建方程即可解决问题;
(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.利用待定系数法求出直线BE′的解析式即可解决问题;
【详解】
解:(1)∵AB=11,四边形OABC是矩形,
∴OC=AB=11,
∴C(0,11),代入y=y=﹣x+b得到b=11,
∴直线AC的解析式为y=﹣x+11,
令y=0,得到x=9,
∴A(9,0),B(9,11).
(2)在Rt△BCD中,BC=9,BD=AB=11,
∴CD==12,
∴OD=11﹣12=3,
设DE=AE=x,
在Rt△DEO中,∵DE2=OD2+OE2,
∴x2=32+(9﹣x)2,
∴x=1,
∴AE=1.
(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.
∵E(4,0),
∴E′(﹣4,0),
设直线BE′的解析式为y=kx+b,则有
解得,
∴直线BE′的解析式为y=x+,
∴P(0,).
故答案为(1)B(9,11);(2)1;(3)存在,P(0,).
本题考查一次函数综合题、矩形的性质、翻折变换、勾股定理等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题,属于中考压轴题.
16、3<m<1.
【解析】
根据一次函数的性质即可求出m的取值范围.
【详解】
∵一次函数的图象经过第二、三、四象限,
∴,
∴3<m<1.
本题考查一次函数,解题的关键是熟练运用一次函数的性质,本题属于基础题型.
17、(1);(2);(3)见详解.
【解析】
(1)根据等腰三角形的周长计算公式表示即可;
(2)根据构成三角形三边的关系即可确定自变量的取值范围;
(3)可取两个点,在平面直角坐标系中描点、连线即可.
【详解】
解:(1)这个函数关系式为;
(2)由题意得,即,
解得,
所以自变量的取值范围为;
(3)当时,;当时,,函数关系式()的图象如图所示,
本题考查了一次函数关系式、函数自变量的取值范围及函数的图象,结合等腰三角形的性质及三角形三边的关系是解题的关键.
18、(1)银卡消费:y=10x+150,普通消费:y=20x;(2)A(0,150),B(15,300),C(45,600);(3)答案见解析.
【解析】
试题分析:(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;
(2)利用函数交点坐标求法分别得出即可;
(3)利用(2)的点的坐标以及结合得出函数图象得出答案.
解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;
(2)由题意可得:当10x+150=20x,
解得:x=15,则y=300,
故B(15,300),
当y=10x+150,x=0时,y=150,故A(0,150),
当y=10x+150=600,
解得:x=45,则y=600,
故C(45,600);
(3)如图所示:由A,B,C的坐标可得:
当0<x<15时,普通消费更划算;
当x=15时,银卡、普通票的总费用相同,均比金卡合算;
当15<x<45时,银卡消费更划算;
当x=45时,金卡、银卡的总费用相同,均比普通票合算;
当x>45时,金卡消费更划算.
【点评】此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、丙
【解析】
由表中数据可知,丙的平均成绩和甲的平均成绩最高,而丙的方差也是最小的,成绩最稳定,所以应该选择:丙.
故答案为丙.
20、1
【解析】
原式=2(m2+2mn+n2)-6,
=2(m+n)2-6,
=2×9-6,
=1.
21、
【解析】
【分析】根据分式有意义的条件进行求解即可得.
【详解】由题意得:x-1≠0,
解得:x≠1,
故答案为:x≠1.
【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.
22、
【解析】
根据七巧板中图形分别是等腰直角三角形和正方形计算PH的长,即FF'的长,作高线GG',根据直角三角形斜边中线的性质可得GG'的长,即AE的长,可得结论.
【详解】
解:如图:∵四边形MNQK是正方形,且MN=1,
∴∠MNK=45°,
在Rt△MNO中,OM=ON=,
∵NL=PL=OL=,
∴PN=,
∴PQ=,
∵△PQH是等腰直角三角形,
∴PH=FF'==BE,
过G作GG'⊥EF',
∴GG'=AE=MN=,
∴CD=AB=AE+BE=+=.
故答案为:.
本题主要考查了正方形的性质、七巧板、等腰直角三角形的性质及勾股定理等知识.熟悉七巧板是由七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边.
23、同位角相等,两直线平行
【解析】
逆命题是原命题的反命题,故本题中“两直线平行,同位角相等”的逆命题是同位角相等,两直线平行
本题属于对逆命题的基本知识的考查以及逆命题的反命题的考查和运用
二、解答题(本大题共3个小题,共30分)
24、(8076,0)
【解析】
先利用勾股定理求得AB的长,再找到图形变换规律为:△OAB每连续3次后与原来的状态一样,然后求得△2020的横坐标,进而得到答案.
【详解】
∵A(-3,0),B(0,4),
∴OA=3,OB=4,
∴AB==5,
∴△ABC的周长=3+4+5=12,
图形变换规律为:△OAB每连续3次后与原来的状态一样,
∵2020÷3=673…1,
∴△2020的直角顶点是第673个循环组后第一个三角形的直角顶点,
∴△2020的直角顶点的横坐标=673×12=8076,
∴△2020的直角顶点坐标为(8076,0)
故答案为:(8076,0).
本题主要考查图形的变换规律,勾股定理,解此题的关键在于准确理解题意找到题中图形的变化规律.
25、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.
【解析】
(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.
(2)根据平均数,中位数,众数的意义回答.
【详解】
解:
(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);
出现次数最多的是4万元,所以众数是4(万元);
因为第五,第六个数均是5万元,所以中位数是5(万元).
(2)今年每个销售人员统一的销售标准应是5万元.
理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.
本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.
26、(1)20,25,图详见解析;(2)众数:1.65m,中位数1.60m,平均数1.61m;(3)能.
【解析】
(1) 用整体1减去其他百分比,即可求出a的值,用已知人数除以所占百分比即可求解.
(2) 根据平均数,众数和中位数的定义分别进行求解.
(3) 根据中位数的意义可直接判断出能否进入复赛.
【详解】
(1),
(2)平均数;在这组数据样本中,1.65出现了6次,出现次数最多,故众数为1.65;将这组样本数据从小到大的顺序排列,其中处于中间的两个数都为1.60,所以中位数为.
(3)能.
本题主要考查数据的处理、数据的分析以及统计图表,熟悉掌握是关键.
题号
一
二
三
四
五
总分
得分
批阅人
甲
乙
平均数
9
8
方差
1
1
甲
乙
丙
丁
平均数
方差
销售额(单位:万元)
3
4
5
6
7
8
10
销售员人数(单位:人)
1
3
2
1
1
1
1
广西省河池市名校2024-2025学年数学九上开学联考试题【含答案】: 这是一份广西省河池市名校2024-2025学年数学九上开学联考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广西河池市2024年数学九上开学联考模拟试题【含答案】: 这是一份广西河池市2024年数学九上开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广西河池市、柳州市2024年九上数学开学复习检测模拟试题【含答案】: 这是一份广西河池市、柳州市2024年九上数学开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。