|试卷下载
终身会员
搜索
    上传资料 赚现金
    广西柳州市鱼峰区五里亭中学2025届数学九上开学达标检测模拟试题【含答案】
    立即下载
    加入资料篮
    广西柳州市鱼峰区五里亭中学2025届数学九上开学达标检测模拟试题【含答案】01
    广西柳州市鱼峰区五里亭中学2025届数学九上开学达标检测模拟试题【含答案】02
    广西柳州市鱼峰区五里亭中学2025届数学九上开学达标检测模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西柳州市鱼峰区五里亭中学2025届数学九上开学达标检测模拟试题【含答案】

    展开
    这是一份广西柳州市鱼峰区五里亭中学2025届数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F,若DF=3,则AC的长为( )
    A.B.C.D.
    2、(4分)一次函数y=﹣x+2的图象不经过的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    3、(4分)中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米,数据0.000000007用科学记数法表示为( )
    A.0.7×10-8B.7×10-8C.7×10-9D.7×10-10
    4、(4分)下列各式由左边到右边的变形中,属于分解因式的是
    A.a(x+y)="ax+ay"
    B.x2﹣4x+4=x(x﹣4)+4
    C.10x2﹣5x=5x(2x﹣1)
    D.x2﹣16+6x=(x+4)(x﹣4)+6x
    5、(4分)关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确的说法是( )
    A.②④B.②③C.①④D.①③
    6、(4分)已知直线(m,n为常数)经过点(0,-4)和(3,0),则关于x的方程的解为
    A.B.C.D.
    7、(4分)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于( )
    A.10m B.12m C.12.4m D.12.32m
    8、(4分)同一平面直角坐标系中,一次函数与(为常数)的图象可能是
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,□ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是_________;
    10、(4分)使根式有意义的x的取值范围是___.
    11、(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,AB=5,BD=6,则菱形ABCD的面积是_____.
    12、(4分)不等式的正整数解有________个.
    13、(4分)如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位,元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列正确结论的序号是____.
    ①第24天的销售量为200件;
    ②第10天销售一件产品的利润是15元;
    ③第12天与第30天这两天的日销售利润相等;
    ④第30天的日销售利润是750元.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在▱ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F
    (1)如图①,求证:OE=OF;
    (2)如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.
    15、(8分)在Rt△ABC中,∠B=900,AC=100cm, ∠A=600,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(0<t≤25)过点D作DF⊥BC于点F,连结DE、EF。
    (1)四边形AEFD能够成为菱形吗?若能,求相应的t值,若不能,请说明理由。
    (2)当t为何值时,△DEF为直角三角形?请说明理由。
    16、(8分)解下列一元二次方程
    (1)
    (2)
    17、(10分)如图①, 已知△ABC中, ∠BAC=90°, AB="AC," AE是过A的一条直线, 且B、C在AE的异侧, BD⊥AE于D, CE⊥AE于E.
    (1)求证: BD=DE+CE.
    (2)若直线AE绕A点旋转到图②位置时(BD(3)若直线AE绕A点旋转到图③位置时(BD>CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请直接写出结果, 不需证明.
    (4)根据以上的讨论,请用简洁的语言表达BD与DE,CE的数量关系.
    18、(10分)(1)读读做做:教材中有这样的问题,观察下面的式子,探索它们的规律,=1-,=,=……用正整数n表示这个规律是______;
    (2)问题解决:一容器装有1L水,按照如下要求把水倒出:第一次倒出L水,第二次倒出的水量是L水的,第三次倒出的水量是L水的,第四次倒出的水量是L水的,……,第n+1次倒出的水量是L水的,……,按照这种倒水方式,这1L水能否倒完?
    (3)拓展探究:①解方程:+++=;
    ②化简:++…+.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 ▲ 人.
    20、(4分)如图,▱ABCD中,∠ABC=60°,AB=4,AD=8,点E,F分别是边BC,AD的中点,点M是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是______.
    21、(4分)当________时,方程无解.
    22、(4分)将二次根式化为最简二次根式的结果是________________
    23、(4分)将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平行四边形ABCD中,点E、F分别是BC、AD的中点.
    (1)求证:;
    (2)当四边形AECF为菱形且时,求出该菱形的面积.
    25、(10分)如图,菱形ABCD的边长为20cm,∠ABC=120°.动点P、Q同时从点A出发,其中P以4cm/s的速度,沿A→B→C的路线向点C运动;Q以2cm/s的速度,沿A→C的路线向点C运动.当P、Q到达终点C时,整个运动随之结束,设运动时间为t秒.
    (1)在点P、Q运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;
    (2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.
    ①当t为何值时,点P、M、N在一直线上?
    ②当点P、M、N不在一直线上时,是否存在这样的t,使得△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
    26、(12分)分式化简:(a-)÷
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    首先根据条件D、E分别是AC、BC的中点可得DE∥AB,再求出∠2=∠3,根据角平分线的定义推知∠1=∠3,则∠1=∠2,所以由等角对等边可得到DA=DF=AC.
    【详解】
    如图,
    ∵D、E分别为AC、BC的中点,
    ∴DE∥AB,
    ∴∠2=∠3,
    又∵AF平分∠CAB,
    ∴∠1=∠3,
    ∴∠1=∠2,
    ∴AD=DF=3,
    ∴AC=2AD=1.
    故选C.
    本题考查了三角形中位线定理,等腰三角形的判定与性质.三角形中位线的定理是:三角形的中位线平行于第三边且等于第三边的一半.
    2、C
    【解析】
    根据一次函数的系数确定函数图象经过的象限,由此即可得出结论.
    【详解】
    ∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限,不经过第三象限.
    故选C.
    本题考查了一次函数图象与系数的关系.解答本类型题目时,根据函数系数的正负确定函数图象经过的象限是关键.
    3、C
    【解析】
    绝对值小于1的数也可以用科学计数法表示,一般形式为a×10-n,其中1≤|a|<10,与较大数的科学计数法不同的是其使用的是负指数幂,n由原数左边起第一个不为零的数字前面的0的个数决定.
    【详解】
    0.000000007=7×10-9,
    故选:C.
    题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数决定.
    4、C
    【解析】
    分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解:
    A、是多项式乘法,故选项错误;
    B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故选项错误;
    C、提公因式法,故选项正确;
    D、右边不是积的形式,故选项错误.
    故选C.
    5、C
    【解析】
    分别利用概率的意义分析得出答案.
    【详解】
    ①“明天下雨的概率是90%”表示明天下雨的可能性很大;正确;
    ②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;错误;
    ③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;错误;
    ④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确.
    故选C.
    此题主要考查了概率的意义,正确理解概率的意义是解题关键.
    6、C
    【解析】
    将点(0,−4)和(1,0)代入y=mx+n,求出m,n的值,再解方程mx−n=0即可.
    【详解】
    解:∵直线y=mx+n(m,n为常数)经过点(0,−4)和(1,0),
    ∴n=−4,1m+n=0,解得:m=,n=−4,
    ∴方程mx−n=0即为:x+4=0,解得x=−1.
    故选:C.
    本题考查了一次函数与一元一次方程,待定系数法求一次函数的解析式,解一元一次方程.求出m,n的值是解题的关键.
    7、B
    【解析】试题分析:由题意可得:AB=1.5m,BC=0.4m,DC=4m,△ABC∽△EDC,则,即,解得:DE=12,故选B.
    考点:相似三角形的应用.
    8、B
    【解析】
    根据一次函数的图像即可求解判断.
    【详解】
    由A,C图像可得函数y=mx+n过一,二,三象限,故m>0,n>0,
    故y=nx+m也过一,二,三象限,故A,C错误;
    由B,D图像可得函数y=mx+n过一三四象限,故m>0,n<0,
    故y=nx+m过一,二,四象限,故B正确,D错误;
    故选B.
    此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、8
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴O是BD中点,△ABD≌△CDB,
    又∵E是CD中点,
    ∴OE是△BCD的中位线,
    ∴OE=BC,
    即△DOE的周长=△BCD的周长,
    ∴△DOE的周长=△DAB的周长.
    ∴△DOE的周长=×16=8cm.
    10、
    【解析】
    解:根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,
    必须
    解得:
    故答案为:.
    11、24
    【解析】
    根据菱形的对角线互相垂直,利用勾股定理列式求出OA,再根据菱形的对角线互相平分求出AC,然后利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.
    【详解】
    ∵四边形ABCD是菱形,
    ∴OB=OD=3,OA=OC,AC⊥BD,
    在Rt△AOB中,∠AOB=90°,
    根据勾股定理,得:,
    ∴AC=2OA=8,
    ∴S菱形ABCD=×AC×BD=×6×8=24.
    故答案为:24.
    此题考查菱形的性质,勾股定理求线段,菱形的面积有两种求法:①底乘以高;②对角线乘积的一半,解题中根据题中的已知条件选择合适的方法.
    12、4
    【解析】
    首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.
    【详解】
    解:解得:不等式的解集是,
    故不等式的正整数解为1,2,3,4,共4个.
    故答案为:4.
    本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.
    13、①②④.
    【解析】
    图1是产品日销售量y(单位:件)与时间t单位:天)的函数图象,观察图象可对①做出判断;通过图2求出z与t的函数关系式,求出当t=10时z的值,对②做出判断,通过图1求出当0≤t≤24时,产品日销售量y与时间t的函数关系式,分别求出第12天和第30天的销售利润,对③④进行判断,最后综合各个选项得出答案.
    【详解】
    解:图1反应的是日销售量y与时间t之间的关系图象,过(24,200),因此①是正确的,
    由图2可得:z= ,
    当t=10时,z=15,因此②也是正确的,
    当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=kt+b,
    把(0,100),(24,200)代入得:,
    解得: ,
    ∴y=t+100(0≤t≤24),
    当t=12时,y=150,z=-12+25=13,
    ∴第12天的日销售利润为;150×13=1950(元),第30天的销售利润为:150×5=750元,
    因此③不正确,④正确,
    故答案为:①②④.
    本题考查一次函数的应用,分段函数的意义和应用以及待定系数法求函数的关系式等知识,正确的识图,分段求出相应的函数关系式是解决问题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)由四边形ABCD是平行四边形,得到OB=OD,AB∥CD,根据全等三角形的性质即可得到结论;
    (2)根据对角线互相平分的四边形是平行四边形先判定四边形BEDF是平行四边形,继而根据对角线互相垂直的平行四边形是菱形即可得结论.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴OB=OD,AB∥CD,
    ∴∠EBO=∠FDO,
    在△OBE与△ODF中,,
    ∴△OBE≌△ODF(ASA),
    ∴OE=OF;
    (2)∵OB=OD,OE=OF,
    ∴四边形BEDF是平行四边形,
    ∵EF⊥BD,
    ∴平行四边形BEDF是菱形.
    本题考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质.注意掌握数形结合思想的应用.
    15、(1)能,10;(2) 或12,理由见解析.
    【解析】
    (1)首先根据题意计算AB的长,再证明四边形AEFD是平行四边形,要成菱形则AD=AE,因此可得t的值.
    (2)要使△DEF为直角三角形,则有两种情况:①∠EDF=90°;②∠DEF=90°,分别计算即可.
    【详解】
    解:(1)能,
    ∵在Rt△ABC中,∠C=90°﹣∠A=30°,
    ∴AB=AC=×60=30cm。
    ∵CD=4t,AE=2t,
    又∵在Rt△CDF中,∠C=30°,∴DF=CD=2t。∴DF=AE。
    ∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形。
    当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10。
    ∴当t=10时,AEFD是菱形。
    (2)若△DEF为直角三角形,有两种情况:
    ①如图1,∠EDF=90°,DE∥BC,
    则AD=2AE,即60﹣4t=2×2t,解得:t= 。
    ②如图2,∠DEF=90°,DE⊥AC,
    则AE=2AD,即
    2t =2×60-8t,解得:t=12。
    综上所述,当t= 或12时,△DEF为直角三角形
    本题主要考查解直角三角形,关键在于第二问中直角的确定,这类问题是分类讨论的思想,应当掌握.
    16、(1),;(2),.
    【解析】
    (1)将方程左边因式分解,继而求解可得;
    (2)运用配方法求解即可.
    【详解】
    (1)∵(x+3)(x+7)=0,
    ∴x+3=0或x+7=0,
    解得:,;
    (2)



    ∴ .
    本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键
    17、 (1)、证明过程见解析;(2)、BD=DE–CE;证明过程见解析;(3)、BD=DE–CE;(4)、当B,C在AE的同侧时,BD=DE–CE;当B,C在AE的异侧时,BD=DE+CE.
    【解析】
    (1)、根据垂直得出∠ADB=∠CEA=90°,结合∠BAC=90°得出∠ABD=∠CAE,从而证明出△ABD和△ACE全等,根据全等得出BD=AE,AD=EC,然后得出答案;(2)、根据第一题同样的方法得出△ABD和△ACE全等,根据全等得出BD=AE,AD=EC,然后得出结论;(3)、根据同样的方法得出结论;(4)、根据前面的结论得出答案.
    【详解】
    (1)∵BD⊥AE,CE⊥AE
    ∴∠ADB=∠CEA=90°
    ∴∠ABD+∠BAD=90°
    又∵∠BAC=90°
    ∴∠EAC+∠BAD=90°
    ∴∠ABD=∠CAE
    在△ABD与△ACE
    ∴△ABD≌△ACE
    ∴BD=AE,AD=EC
    ∴BD=DE+CE
    (2)、∵BD⊥AE,CE⊥AE
    ∴∠ADB=∠CEA=90°
    ∴∠ABD+∠BAD=90°
    又∵∠BAC=90°
    ∴∠EAC+∠BAD=90°
    ∴∠ABD=∠CAE
    在△ABD与△ACE
    ∴△ABD≌△ACE
    ∴BD=AE,AD=EC
    ∴BD=DE–CE
    (3)、同理:BD=DE–CE
    (4)、归纳:由(1)(2)(3)可知:当B,C在AE的同侧时,BD =DE –CE;当B,C在AE的异侧时,∴BD=DE+CE
    考点:三角形全等的证明与性质
    18、(1);(2)按这种倒水方式,这1L水倒不完,见解析;(3)①x=;②
    【解析】
    (1)归纳总结得到一般性规律,写出即可;
    (2)根据题意列出关系式,利用得出的规律化简即可;
    (3)①方程变形后,利用得出的规律化简,计算即可求出解;
    ②原式利用得出的规律变形,计算即可求出值.
    【详解】
    (1)根据题意得:=-;
    (2)前n次倒出的水总量为+++…+=1-+-+-+…+-=1-=,
    ∵<1,
    ∴按这种倒水方式,这1L水倒不完;
    (3)①方程整理得:[(1-)+(-)+(-)+(-)]•=,
    [(1-)]•=,
    •=,
    解得:x=,
    经检验,x=是原方程的解,
    ∴原方程的解为x=;
    ②++…+
    =
    =(-)+(-)+(-)+…+[-]
    =[-]
    =.
    本题考查规律型:数字的变化类,解分式方程,分式的混合运算,解答本题的关键是根据所给式子找出规律,并利用规律解答.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、216
    【解析】
    由题意得,50个人里面坐公交车的人数所占的比例为:15/50 =30%,
    故全校坐公交车到校的学生有:720×30%=216人.
    即全校坐公交车到校的学生有216人.
    20、4+4
    【解析】
    连接EF,点E、F分别是边BC、AD边的中点,可知BE=AF=AB=4,可证四边形ABEF为菱形,根据菱形的性质可知AE⊥BF,且AE与BF互相平分,∠ABC=60°,△ABE为等边三角形,ME=F=4,由勾股定理求MF,根据菱形的性质可证四边形MENF为矩形,再求四边形ENFM的周长.
    解:连接EF,
    ∵点E、F分别是边BC、AD边的中点,
    ∴BE=AF=AB=4,
    又AF∥BE,
    ∴四边形ABEF为菱形,由菱形的性质,得AE⊥BF,且AE与BF互相平分,
    ∵∠ABC=60°,∴△ABE为等边三角形,ME=F=4,
    在Rt△MEF中,由勾股定理,得MF=,
    由菱形的性质,可知四边形MENF为矩形,
    ∴四边形ENFM的周长=2(ME+MF)=4+4.
    故答案为4+4
    21、1
    【解析】
    根据分式方程无解,得到1−x= 0,求出x的值,分式方程去分母转化为整式方程,将x的值代入整式方程计算即可求出m的值.
    【详解】
    解:分式方程去分母得:m=2(1−x)+1,
    由分式方程无解,得到1−x=0,即x=1,
    代入整式方程得:m=1.
    故答案为:1.
    此题考查了分式方程的解,将分式方程转化为整式方程是解本题的关键.
    22、4
    【解析】
    直接利用二次根式的性质化简求出答案.
    【详解】

    故答案为:4
    此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.
    23、
    【解析】
    平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.
    【详解】
    解:可设新直线解析式为y=-x+b,
    ∵原直线y=﹣x+1经过点(0,1),
    ∴向右平移3个单位,(3,1),
    代入新直线解析式得:b=,
    ∴新直线解析式为:y=﹣x+.
    故答案为y=﹣x+.
    此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)详见解析;(2)
    【解析】
    (1)根据平行四边形的性质和全等三角形的判定解答即可;
    (2)根据菱形的性质和菱形的面积解答即可.
    【详解】
    (1)证明:∵平行四边形ABCD
    ∴,,
    ∵点E、F分别为BC、AD中点
    ∴,

    ∴,

    (2)∵四边形AECF是菱形
    ∴CE=AE
    BE=CE=AE=4
    ∵AB=4
    ∴AB=BE=AE=4,
    过点A作AH⊥BC于H
    AH=2
    S菱形AECF=CE×AH=4×2=8.
    考查了菱形的性质,全等三角形的判定与性质,根据平行四边形的性质和全等三角形的判定解答是解题的关键.
    25、(1)在点P、Q运动过程中,始终有PQ⊥AC;理由见解析;(1)①当t=时,点P、M、N在一直线上;② 存在这样的t,故 当t=1或时,存在以PN为一直角边的直角三角形.
    【解析】
    (1)此问需分两种情况,当0<t≤5及5<t≤10两部分分别讨论得PQ⊥AC.
    (1)①由于点P、M、N在一直线上,则AQ+QM=AM,代入求得t的值.
    ②假设存在这样的t,使得△PMN是以PN为一直角边的直角三角形,但是需分点N在AD上时和点N在CD上时两种情况分别讨论.
    【详解】
    解:(1)若0<t≤5,则AP=4t,AQ=1t.
    则==,
    又∵AO=10,AB=10,∴==.
    ∴=.又∠CAB=30°,∴△APQ∽△ABO.
    ∴∠AQP=90°,即PQ⊥AC.
    当5<t≤10时,同理,可由△PCQ∽△BCO得∠PQC=90°,即PQ⊥AC.
    ∴在点P、Q运动过程中,始终有PQ⊥AC.
    (1)①如图,在Rt△APM中,∵∠PAM=30°,AP=4t,
    ∴AM=.
    在△APQ中,∠AQP=90°,
    ∴AQ=AP?cs30°=1t,
    ∴QM=AC-1AQ=10-4t.
    由AQ+QM=AM得:1t+10-4
    t=,
    解得t=.
    ∴当t=时,点P、M、N在一直线上.
    ②存在这样的t,使△PMN是以PN为一直角边的直角三角形.
    设l交AC于H.
    如图1,当点N在AD上时,若PN⊥MN,则∠NMH=30°.
    ∴MH=1NH.得10-4t-t=1×,解得t=1.
    如图1,当点N在CD上时,若PM⊥PN,则∠HMP=30°.
    ∴MH=1PH,同理可得t=.
    故当t=1或时,存在以PN为一直角边的直角三角形.
    26、a-b
    【解析】
    利用分式的基本性质化简即可.
    【详解】
    ===.
    此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.
    题号





    总分
    得分
    相关试卷

    广西河池市、柳州市2024年九上数学开学复习检测模拟试题【含答案】: 这是一份广西河池市、柳州市2024年九上数学开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年广西柳州市鱼峰区第八中学九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024年广西柳州市鱼峰区第八中学九上数学开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广西柳州市柳林中学九上数学开学质量检测模拟试题【含答案】: 这是一份2024-2025学年广西柳州市柳林中学九上数学开学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map