开学活动
搜索
    上传资料 赚现金

    广西南宁市天桃中学2024-2025学年九年级数学第一学期开学复习检测试题【含答案】

    广西南宁市天桃中学2024-2025学年九年级数学第一学期开学复习检测试题【含答案】第1页
    广西南宁市天桃中学2024-2025学年九年级数学第一学期开学复习检测试题【含答案】第2页
    广西南宁市天桃中学2024-2025学年九年级数学第一学期开学复习检测试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西南宁市天桃中学2024-2025学年九年级数学第一学期开学复习检测试题【含答案】

    展开

    这是一份广西南宁市天桃中学2024-2025学年九年级数学第一学期开学复习检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,将△ABC 绕点 A 按顺时针方向旋转 120°得到△ADE,点 B 的对应点是点 E,点 C 的对应点是点 D,若∠BAC=35°,则∠CAE 的度数为( )
    A.90°B.75°C.65°D.85°
    2、(4分)已知一次函数y=(2m﹣1)x+3,如果函数值y随x的增大而减小,那么m的取值范围为( )
    A.m<2B.C.D.m>0
    3、(4分)如果,则a的取值范围是( )
    A. B. C. D.
    4、(4分)二次根式有意义的条件是( )
    A.x<2B.x<﹣2C.x≥﹣2D.x≤2
    5、(4分)菱形具有而一般平行四边形不具有的性质是( )
    A.两组对边分别相等B.两条对角线相等
    C.四个内角都是直角D.每一条对角线平分一组对角
    6、(4分)如图,菱形中,点为对角线上一点,且于点,连接,若,则的度数为( )
    A.B.C.D.
    7、(4分)一组数据3、2、1、2、2的众数,中位数,方差分别是( )
    A.2,1,0.4B.2,2,0.4
    C.3,1,2D.2,1,0.2
    8、(4分)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,则点C的纵坐标y与x的函数解析式是( )
    A.y=xB.y=1﹣xC.y=x+1D.y=x﹣1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在平面直角坐标系中,已知点,直线与线段有交点,则的取值范围为__________.
    10、(4分)已知关于的方程会产生增根,则的值为________.
    11、(4分)一组数据1,2,3,x,5的平均数是3,则该组数据的方差是_____.
    12、(4分)计算:=_____;|﹣|=_____.
    13、(4分)如果最简二次根式和是同类二次根式,那么a=_______
    三、解答题(本大题共5个小题,共48分)
    14、(12分)问题情境:在中,,点是的中点,以为角的顶点作.
    感知易证:(1)如图1,当射线经过点时,交边于点.将从图1中的位置开始,绕点按逆时针方向旋转,使射线、始终分别交边,于点、,如图2所示,易证,则有.
    操作探究:(2)如图2,与是否相似,若相似,请证明;若不相似,请说明理由;
    拓展应用:(3)若,直接写出当(2)中的旋转角为多少度时,与相似.
    15、(8分)计算:﹣(π﹣2019)0+2﹣1.
    16、(8分)(1)探究新知:如图1,已知与的面积相等,试判断与的位置关系,并说明理由.
    (2)结论应用:
    ①如图2,点,在反比例函数的图像上,过点作轴,过点作轴,垂足分别为,,连接.试证明:.
    ②若①中的其他条件不变,只改变点,的位置如图3所示,请画出图形,判断与的位置关系并说明理由.
    17、(10分)矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED.
    (1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);
    (2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式;
    (3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由.
    18、(10分)分解因式:
    (1). (2).
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,对面积为S的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2;··· ;则______.按此规律继续下去,可得到,则其面积_______.
    20、(4分)如图,函数y=3x和y=kx+6的图象相交于点A(a,3),则不等式3x≤kx+6的解集为_____.
    21、(4分)函数y=﹣的自变量x的取值范围是_____.
    22、(4分)如图,在平面直角坐标系中,矩形OABC的边OA=6,OC=2,一条动直线l分别与BC、OA将于点E、F,且将矩形OABC分为面积相等的两部分,则点O到动直线l的距离的最大值为_____.
    23、(4分)若直角三角形的斜边长为6,则这个直角三角形斜边的中线长________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点,求这个一次函数的解析式.
    25、(10分)已知一个一次函数的图象与一个反比例函数的图象交于点.
    分别求出这两个函数的表达式;
    在同一个平面直角坐标系中画出这两个函数的图象,根据图象回答:当取何值时,一次函数的值大于反比例函数的值?
    求平面直角坐标中原点与点构成的三角形的面积.
    26、(12分)如图,在平面直角坐标系xOy中,直线的表达式为,点A,B的坐标分别为
    (1,0),(0,2),直线AB与直线相交于点P.
    (1)求直线AB的表达式;
    (2)求点P的坐标;
    (3)若直线上存在一点C,使得△APC的面积是△APO的面积的2倍,直接写出点C的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由题意可得∠BAE是旋转角为120°且∠BAC=35°,可求∠CAE的度数.
    【详解】
    ∵将△ABC绕点A按顺时针方向旋转120°得到△ADE
    ∴∠BAE=120°且∠BAC=35°
    ∴∠CAE=85°
    故选D.
    本题考查了旋转的性质,关键是熟练运用旋转的性质解决问题.
    2、C
    【解析】
    根据一次函数的性质,当函数值y随自变量x的增大而减小时,那么k<0,由此可得不等式2m﹣1<0,解不等式即可求得m的取值范围.
    【详解】
    ∵函数值y随自变量x的增大而减小,
    ∴2m﹣1<0,
    ∴m<.
    故选C.
    本题考查了一次函数的性质,熟练运用一次函数的性质是解决问题的关键.
    3、B
    【解析】
    试题分析:根据二次根式的性质1可知:,即故答案为B..
    考点:二次根式的性质.
    4、C
    【解析】
    根据被开方数大于等于0列式计算即可得解.
    【详解】
    由题意得:x+1≥0,解得:x≥﹣1.
    故选C.
    本题考查了的知识点为:二次根式有意义的条件是被开方数是非负数.
    5、D
    【解析】
    菱形具有平行四边形的全部性质,故分析ABCD选项,添加一个条件证明平行四边形为菱形即为菱形具有而平行四边形不具有的性质,即可解题.
    【详解】
    解:平行四边形的对角线互相平分,对边相等,
    且菱形具有平行四边形的全部性质,
    故A、B、C选项错误;
    对角线平分一组对角的平行四边形是菱形,故D选项正确.
    故选D.
    本题考查了平行四边形的邻角互补、对角线互相平分,对角相等的性质,菱形每条对角线平分一组对边的性质,本题中熟练掌握菱形、平行四边形的性质是解题的关键.
    6、A
    【解析】
    依据菱形的性质求出∠DBC度数,再依据三角形的外角性质可得∠ECB度数,在Rt△ECH中,∠HEC=90°-∠ECH.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴∠DBC=∠ABC=15°. 又∠DEC=∠EBC+∠ECB,即30°=15°+∠ECB,
    所以∠ECB=15°. ∴∠HEC=90°-15°=75°.
    故选:A.
    本题主要考查了菱形的性质,解决菱形中角的问题,一般运用了菱形的对角线平分每一组对角的性质.
    7、B
    【解析】
    试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为 [(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.
    故选B.
    8、C
    【解析】
    过点C作CE⊥y轴于点E,只要证明△CEA≌△AOB(AAS),即可解决问题;
    【详解】
    解:过点C作CE⊥y轴于点E.
    ∵∠CEA=∠CAB=∠AOB=90°,
    ∴∠EAC+∠OAB=90°,∠OAB+∠OBA=90°,
    ∴∠EAC=∠ABO,
    ∵AC=AB,
    ∴△CEA≌△AOB(AAS),
    ∴EA=OB=x,CE=OA=1,
    ∵C的纵坐标为y,OE=OA+AD=1+x,
    ∴y=x+1.
    故选:C.
    本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    要使直线与线段AB交点,则首先当直线过A是求得k的最大值,当直线过B点时,k取得最小值.因此代入计算即可.
    【详解】
    解:当直线过A点时, 解得
    当直线过B点时, 解得
    所以要使直线与线段AB有交点,则
    故答案为:
    本题主要考查正比例函数的与直线相交求解参数的问题,这类题型是考试的热点,应当熟练掌握.
    10、1
    【解析】
    增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出k的值.
    【详解】
    解:方程两边都乘(x-4),得
    2x=k
    ∵原方程增根为x=4,
    ∴把x=4代入整式方程,得k=1,
    故答案为:1.
    此题考查分式方程的增根,解题关键在于掌握增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.
    11、1
    【解析】
    先用平均数是3可得x的值,再结合方差公式计算即可.
    【详解】
    平均数是3(1+1+3+x+5),解得:x=4,
    ∴方差是S1[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]10=1.
    故答案为1.
    本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大.
    12、
    【解析】
    根据二次根式的分母有理化和二次根式的性质分别计算可得.
    【详解】
    =,|-|==2,
    故答案为:,2.
    本题主要考查二次根式的分母有理化,解题的关键是掌握二次根式的有理化方法和二次根式的性质.
    13、3
    【解析】
    分析:根据同类二次根式的被开方式相同列方程求解即可.
    详解:由题意得,
    3a+4=25-4a,
    解之得,
    a=3.
    故答案为:3.
    点睛:本题考查了同类二次根式的应用,根据同类二次根式的定义列出关于a的方程是解答本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)CD;(2)△BDF∽△DEF,理由见详解;(3)10°或40°.
    【解析】
    (1)如图2,根据∠EDF=∠B及三角形外角性质可得∠BFD=∠CDE,再根据∠B=∠C即可得到△BFD∽△CDE解决问题.
    (2)如图2,由(2)得△BFD∽△CDE,则有,由D是BC的中点可得.再根据∠B=∠EDF即可得到△BDF∽△DEF.
    (3)由∠B=∠C=50°可得∠BAC=80°,AB=AC,再由BD=CD可得AD⊥BC.若△DEF与△ABC相似,由△BDF∽△DEF可得△BDF与△ABC相似,从而得到∠BDF=∠BAC=80°,或∠BDF=∠C=50°,即可解决问题.
    【详解】
    解:(1)如图2,

    ∵AB=AC
    ∴∠B=∠C,
    ∵∠FDC是△BFD的一个外角,
    ∴∠FDC=∠B+∠BFD.
    ∵∠FDC=∠FDE+∠EDC,∠EDF=∠B,
    ∴∠BFD=∠CDE.
    ∵∠B=∠C,
    ∴△BFD∽△CDE;
    ∴.
    (2)如图2,结论:△BDF∽△DEF.

    理由:由(1)得.
    ∵D是BC的中点,
    ∴BD=CD,
    ∴,
    又∵∠B=∠EDF,
    ∴△BDF∽△DEF.
    (3)连接AD,如图3,

    ∵∠B=∠C=50°,
    ∴∠BAC=80°,AB=AC.
    ∵BD=CD,
    ∴AD⊥BC.
    若△DEF与△ABC相似,
    ∵△BDF∽△DEF,
    ∴△BDF与△ABC相似,
    ∴∠BDF=∠BAC=80°,或∠BDF=∠C=50°,
    ∴∠ADF=90°﹣80°=10°,或∠ADF=90°﹣50°=40°,
    ∴当(2)中的旋转角为10°或40°时,△DEF与△ABC相似.
    本题属于相似形综合题,主要考查了相似三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质、三角形内角和定理等知识,解题的关键是正确寻找相似三角形的判定条件,属于中考常考题型.
    15、
    【解析】
    本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
    【详解】
    解:原式.
    本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
    16、(1),理由见解析;(2)①见解析;②,理由见解析.
    【解析】
    (1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,则∠CGA=∠DHB=90°,根据△ABC与△ABD的面积相等,证明AB与CD的位置关系;
    (2)连结MF,NE,设点M的坐标为(x1,y1),点N的坐标为(x2,y2),进一步证明S△EFM=S△EFN,结合(1)的结论即可得到MN∥EF;
    (3)连接FM、EN、MN,结合(2)的结论证明出MN∥EF,GH∥MN,于是证明出EF∥GH.
    【详解】
    (1)如图1,分别过点、作、,垂足分别为、,
    则,
    ∴,
    ∵且,

    ∴,
    ∴四边形为平行四边形,
    ∴;
    (2)①如图2,连接,,
    设点的坐标为,点的坐标为,
    ∵点,在反比例函数的图像上,
    ∴,.
    ∵轴,轴,且点,在第一象限,
    ∴,,,.
    ∴,,
    ∴,
    从而,由(1)中的结论可知:;
    ②如图

    理由:连接,,
    设点的坐标为,点的坐标为,
    由(2)①同理可得:
    ,,
    ∴,
    从而,由(1)中的结论可知:.
    本题主要考查反比例函数的综合题,解答本题的关键是根据同底等高的两个三角形面积相等进行解答问题,此题难度不是很大,但是三问之间都有一定的联系.
    17、(1)BD=;(2)y=﹣x+6;(3)M(,0),N(0,)
    【解析】
    (1)如图1,当点D落在边BC上时,BD2=AD2-AB2,即可求解;
    (2)分CG=EG、CE=GE、CE=CG三种情况分别求解;
    (3)①由点P为矩形ABCO的对称中心,得到求得直线PB的解析式为,得到直线AD的解析式为:,解方程即可得到结论;②根据①中的结论得到直线AD 的解析式为,求得∠DAB=30°,连接AE,推出A,B,E三点共线,求得,设M(m,0),N(0,n),解方程组即可得到结论.
    【详解】
    (1)如图1,
    在矩形ABCO中,∠B=90°
    当点D落在边BC上时,BD2=AD2﹣AB2,
    ∵C(0,3),A(a,0)
    ∴AB=OC=3,AD=AO=a,
    ∴BD=;
    (2)如图2,连结AC,
    ∵a=3,∴OA=OC=3,
    ∴矩形ABCO是正方形,∴∠BCA=45°,
    设∠ECG的度数为x,
    ∴AE=AC,∴∠AEC=∠ACE=45°+x,
    ①当CG=EG时,x=45°+x,
    解得x=0,不合题意,舍去;
    ②当CE=GE时,如图2,
    ∠ECG=∠EGC=x
    ∵∠ECG+∠EGC+∠CEG=180°,
    ∴x+x+(45°+x)=180°,解得x=45°,
    ∴∠AEC=∠ACE=90°,不合题意,舍去;
    ③当CE=CG时,∠CEG=∠CGE=45°+x,
    ∵∠ECG+∠EGC+∠CEG=180°,
    ∴x+(45°+x)+(45°+x)=180°,解得x=30°,
    ∴∠AEC=∠ACE=75°,∠CAE=30°
    如图3,连结OB,交AC于点Q,过E作EH⊥AC于H,连结BE,
    ∴EH=AE=AC,BQ=AC,
    ∴EH=BQ,EH∥BQ且∠EHQ=90°
    ∴四边形EHQB是矩形
    ∴BE∥AC,
    设直线BE的解析式为y=﹣x+b,
    ∵点B(3,3)在直线上,则b=6,
    ∴直线BE的解析式为y=﹣x+6;
    (3)①∵点P为矩形ABCO的对称中心,
    ∴,
    ∵B(a,3),
    ∴PB的中点坐标为:,
    ∴直线PB的解析式为,
    ∵当P,B关于AD对称,
    ∴AD⊥PB,
    ∴直线AD的解析式为:,
    ∵直线AD过点,∴,
    解得:a=±3,
    ∵a≥3,
    ∴a=3;
    ②存在M,N;
    理由:∵a=3,
    ∴直线AD 的解析式为y=﹣x+9,
    ∴∴∠DAO=60°,
    ∴∠DAB=30°,
    连接AE,
    ∵AD=OA=3,DE=OC=3,
    ∴∠EAD=30°,
    ∴A,B,E三点共线,
    ∴AE=2DE=6,
    ∴,
    设M(m,0),N(0,n),
    ∵四边形EFMN是平行四边形,
    ∴,
    解得:,
    ∴M(,0),N(0,).
    本题考查的是一次函数综合运用,涉及到正方形和等腰三角形性质、圆的基本知识,其中(2),要注意分类求解,避免遗漏.
    18、(1);(2)
    【解析】
    (1)首先提取公因式2,进而利用完全平方公式分解因式即可.
    (2)先用平方差公式分解,再化简即可.
    【详解】
    解:(1)原式;
    (2)原式
    .
    此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,注意分解要彻底.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、19S
    【解析】
    首先根据题意,求得,同理求得,则可求得面积的值;根据题意发现规律:即可求得答案.
    【详解】
    连,
    ∵,
    ∴,
    同理:,
    ∴,
    同理:,
    ∴,
    即,
    同理:S,S,
    ∴.
    故答案是:19S,.
    本题主要考查了三角形面积及等积变换,利用三角形同高则面积比与底边关系分别分析得出规律:是解题关键.
    20、x≤1
    【解析】
    先利用正比例函数解析式确定点坐标,然后利用函数图象,写出直线在直线上方所对应的自变量的范围即可.
    【详解】
    解:把代入得,解得,则,
    根据图象得,当时,.
    故答案为:
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的集合.
    21、x<2
    【解析】
    令2-x>0,解这个不等式即可求出自变量x的取值范围.
    【详解】
    由题意得,
    2-x>0,
    ∴x<2.
    故答案为:x<2.
    本题考查了常量与变量,根据实际问题的数量关系用解析式法表示实际问题中两变化的量之间的关系,常量和变量的定义,常量就是在变化过程中不变的量,变量就是可以取到不同数值的量.
    22、.
    【解析】
    根据一条动直线l将矩形OABC分为面积相等的两部分,可知G和H分别是OB和OC的中点,得GH=3,根据勾股定理计算OG的长,并且知点O到直线l的距离最大,则l⊥OG,可得结论.
    【详解】
    连接OB,交直线l交于点G,
    ∵直线l将矩形OABC分为面积相等的两部分,
    ∴G是OB的中点,
    过G作GH∥BC,交OC于H,
    ∵BC=OA=6,
    ∴GH=BC=3,OH=OC=1,
    若要点O到直线l的距离最大,则l⊥OG,
    Rt△OGH中,由勾股定理得:OG=,
    故答案为:.
    本题考查一次函数和矩形的综合运用,考查了矩形的性质,直角三角形的性质,勾股定理,确定直线l与OB垂直时,OG最大是本题的关键.
    23、1
    【解析】
    根据直角三角形的性质直接求解.
    【详解】
    解:直角三角形斜边长为6,
    这个直角三角形斜边上的中线长为1.
    故答案为:1.
    本题考查了直角三角形的性质,解决此题的关键是熟记直角三角形斜边上的中线等于斜边的一半.
    二、解答题(本大题共3个小题,共30分)
    24、y=2x+1
    【解析】
    设一次函数的解析式为y=kx+b,然后将A、B两点代入解析式列式计算即可.
    【详解】
    解:设一次函数的解析式为y=kx+b,
    因为一次函数的图象经过A(﹣2,﹣3),B(1,3)两点
    所以,
    解得:k=2,b=1.
    ∴函数的解析式为:y=2x+1.
    本题考查的是待定系数法求解一次函数解析式,能够掌握待定系数法求解解析式的方法是解题的关键.
    25、(1),;(2)图见详解,或;(3).
    【解析】
    (1)设反比例的函数解析式为,一次函数的解析式为,将点P代入可得k值,将点Q代入可得m值,将点P、Q代入求解即可;
    (2)描点、连线即可画出函数的图象,当一次函数的图象在反比例函数图象的上方时,一次函数的值大于反比例函数的值,由此可确定x的取值;
    (3)连接PO,QO,设直线与y轴交于点M,由求解.
    【详解】
    解:(1)设反比例的函数解析式为,一次函数的解析式为,
    将点代入得,解得,
    将点代入得,
    将点,代入
    得:,
    解得

    所以一次函数的表达式为,反比例函数的表达式为;
    (2)函数和的图象如图所示,
    由图象可得,当或时,一次函数的值大于反比例函数的值;
    (3)如图,连接PO,QO,设直线与y轴交于点M,
    直线与y轴的交点坐标M(0,-1),即,点P到y轴的距离为2,点Q到y轴的距离为1,

    所以平面直角坐标中原点与点构成的三角形的面积为.
    本题考查了一次函数与反比例函数的综合,涉及了待定系数法求函数解析式、画函数图象、根据函数图象及函数值的大小确定自变量的取值范围、围成的三角形的面积,熟练掌握待定系数法及运用数形结合的数学思想是解题的关键.
    26、 (1) y=-1x+1 ;(1) P的坐标为(1,-1);(3) (3,0),(1,-4).
    【解析】
    【分析】(1)用待定系数法求函数的解析式;(1)由两个解析式构成方程组,解方程组可得交点的坐标;(3)点P可能在P的上方或下方,结合图形进行分析计算.
    【详解】
    解:(1)设直线AB的表达式为y=kx+b.
    由点A,B的坐标分别为(1,0),(0,1),
    可知
    解得
    所以直线AB的表达式为y=-1x+1.
    (1)由题意,

    解得
    所以点P的坐标为(1,-1).
    (3)(3,0),(1,-4).
    【点睛】本题考核知识点:一次函数的解析式,交点. 解题关键点:理解一次函数的性质.
    题号





    总分
    得分

    相关试卷

    2024年广西南宁市天桃实验学校九年级数学第一学期开学质量跟踪监视试题【含答案】:

    这是一份2024年广西南宁市天桃实验学校九年级数学第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广西壮族自治区南宁市天桃实验学校九上数学开学预测试题【含答案】:

    这是一份2024-2025学年广西壮族自治区南宁市天桃实验学校九上数学开学预测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广西南宁市天桃中学2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案:

    这是一份广西南宁市天桃中学2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,设等边三角形的边长为x,如果,那么下列比例式中正确的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map