广西南宁市马山县2025届数学九上开学检测试题【含答案】
展开
这是一份广西南宁市马山县2025届数学九上开学检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,直线与x轴、y轴交于A、B两点,∠BAO的平分线所在的直线AM的解析式是( )
A.B.C.D.
2、(4分)在 RtABC 中, ∠C 90 , AB 3 , AC 2, 则 BC 的值( )
A.B.C.D.
3、(4分)生活处处有数学:在五一出游时,小明在沙滩上捡到一个美丽的海螺,经仔细观察海螺的花纹后画出如图所示的蝶旋线,该螺旋线由一系列直角三角形组成,请推断第n个三角形的面积为( )
A.B.C.D.
4、(4分)下列命题是真命题的是( )
A.相等的角是对顶角
B.两直线被第三条直线所截,内错角相等
C.若,则
D.有一角对应相等的两个菱形相似
5、(4分)下列各组长度的线段能组成直角三角形的是( ).
A.a=2,b=3,c=4B.a=4,b=4,c=5
C.a=5,b=6,c=7D.a=5,b=12,c=13
6、(4分)在平面直角坐标系中,点(–1,–2)在第( )象限.
A.一 B.二 C.三 D.四
7、(4分)如图,在长方形中,绕点旋转,得到,使,,三点在同一条直线上,连接,则是( )
A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形
8、(4分)如图,矩形ABCD中,AB=7,BC=4,按以下步骤作图:以点B为圆心,适当长为半径画弧,交AB,BC于点E,F;再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠ABC内部相交于点H,作射线BH,交DC于点G,则DG的长为( )
A.1B.1C.3D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一只不透明的袋子中装有4个小球,分别标有数字2,3,4,,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和.记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:
试估计出现“和为7”的概率为________.
10、(4分)若直角三角形两边的长分别为a、b且满足+|b-4|=0,则第三边的长是 _________.
11、(4分)已知x=+5,则代数式(x﹣3)2﹣4(x﹣3)+4的值是_____.
12、(4分)如果a2-ka+81是完全平方式,则k=________.
13、(4分)矩形的对角线与相交于点,,,分别是,的中点,则的长度为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)观察下列各式子,并回答下面问题.
第一个:
第二个:
第三个:
第四个:…
(1)试写出第个式子(用含的表达式表示),这个式子一定是二次根式吗?为什么?
(2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.
15、(8分)如图,在中,,点M、N分别在BC所在的直线上,且BM=CN,求证:△AMN是等腰三角形.
16、(8分)如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M,N分别是斜边AB,DE的中点,点P为AD的中点,连接AE、BD、MN.
(1)求证:△PMN为等腰直角三角形;
(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP,BD分别交于点G、H,请判断①中的结论是否成立,若成立,请证明;若不成立,请说明理由.
17、(10分)解不等式组:,并把解集表示在数轴上;
18、(10分)在数学拓展课上,老师让同学们探讨特殊四边形的做法:
如图,先作线段,作射线(为锐角),过作射线平行于,再作和的平分线分别交和于点和,连接,则四边形为菱形;
(1)你认为该作法正确吗?请说明理由.
(2)若,并且四边形的面积为,在上取一点,使得.请问图中存在这样的点吗?若存在,则求出的长;若不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知,那么________.
20、(4分)某一次函数的图象经过点(3,),且函数y随x的增大而增大,请你写出一个符合条件的函数解析式______________________
21、(4分)如图,在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点B(6,2),C(4,0),直线y=2x+1以每秒1个单位长度的速度沿y轴向下平移,经过______秒该直线可将平行四边形OABC分成面积相等的两部分.
22、(4分)菱形ABCD的周长为24,∠ABC=60°,以AB为腰在菱形外作底角为45°的等腰△ABE,连结AC,CE,则△ACE的面积为___________.
23、(4分)如果a-b=2,ab=3,那么a2b-ab2=_________;
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,矩形中,对角线的垂直平分线与相交于点,与相交于点,连接,.求证:四边形是菱形.
25、(10分)如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.
(1)请补全下表:
(2)填空:
由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把菱形的面积S记为S(α).例如:当α=30°时,;当α=135°时,.由上表可以得到( ______°);( ______°),…,由此可以归纳出.
(3) 两块相同的等腰直角三角板按如图的方式放置,AD=,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).
26、(12分)如图,在四边形纸片ABCD中,∠B=∠D=90°,点E,F分别在边BC,CD上,将AB,AD分别沿AE,AF折叠,点B,D恰好都和点G重合,∠EAF=45°.
(1)求证:四边形ABCD是正方形;
(2)求证:三角形ECF的周长是四边形ABCD周长的一半;
(3)若EC=FC=1,求AB的长度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
对于已知直线,分别令x与y为0求出对应y与x的值,确定出A与B的坐标,在x轴上取一点B′,使AB=AB′,连接MB′,由AM为∠BAO的平分线,得到∠BAM=∠B′AM,利用SAS得出两三角形全等,利用全等三角形的对应边相等得到BM=B′M,设BM=B′M=x,可得出OM=8-x,在Rt△B′OM中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出M坐标,设直线AM解析式为y=kx+b,将A与M坐标代入求出k与b的值,即可确定出直线AM解析式.
【详解】
对于直线,
令x=0,求出y=8;令y=0求出x=6,
∴A(6,0),B(0,8),即OA=6,OB=8,
根据勾股定理得:AB=10,
在x轴上取一点B′,使AB=AB′,连接MB′,
∵AM为∠BAO的平分线,
∴∠BAM=∠B′AM,
∵在△ABM和△AB′M中,
,
∴△ABM≌△AB′M(SAS),
∴BM=B′M,
设BM=B′M=x,则OM=OB﹣BM=8﹣x,
在Rt△B′OM中,B′O=AB′﹣OA=10﹣6=4,
根据勾股定理得:x2=42+(8﹣x)2,
解得:x=5,
∴OM=1,即M(0,1),
设直线AM解析式为y=kx+b,
将A与M坐标代入得:,
解得:,
则直线AM解析式为y=﹣x+1.
故选B.
此题考查了一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,一次函数与坐标轴的交点,勾股定理,全等三角形的判定与性质,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.
2、A
【解析】
根据勾股定理即可求出.
【详解】
由勾股定理得,.
故选.
本题考查的是勾股定理,掌握勾股定理是解题的关键.
3、D
【解析】
根据勾股定理分别求出、,根据三角形的面积公式分别求出第一个、第二个、第三个三角形的面积,总结规律,根据规律解答即可.
【详解】
解:第1个三角形的面积,
由勾股定理得,,
则第2个三角形的面积,
,
则第3个三角形的面积,
则第个三角形的面积,
故选:.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是,,斜边长为,那么.
4、D
【解析】
A错误,对顶角相等,但相等的角不一定是对顶角.
B错误,两直线平行时,内错角相等.
C错误,当m和n互为相反数时,,但m≠n.
故选D
5、D
【解析】
本题只有,故选D
6、C
【解析】分析:根据在平面直角坐标系中点的符号特征求解即可.
详解:∵-1
相关试卷
这是一份广西南宁市西大附中2025届九上数学开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广西南宁市2024年九上数学开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广西南宁马山县联考2024年九上数学开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。