终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    广西壮族自治区河池天峨县2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】

    立即下载
    加入资料篮
    广西壮族自治区河池天峨县2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】第1页
    广西壮族自治区河池天峨县2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】第2页
    广西壮族自治区河池天峨县2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西壮族自治区河池天峨县2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】

    展开

    这是一份广西壮族自治区河池天峨县2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是( )
    A.(1)B.(2)C.(3)D.无法确定
    2、(4分)如图,在▱ABCD中,,,点M、N分别是边AB、BC上的动点,连接DN、MN,点E、F分别为DN、MN的中点,连接EF,则EF的最小值为
    A.1B.C.D.
    3、(4分)菱形的两条对角线长为6和8,则菱形的边长和面积分别为( )
    A.10,24B.5, 24C.5, 48D.10,48
    4、(4分)若一个直角三角形的两边长为12、13,则第三边长为( )
    A.5B.17C.5或17D.5或
    5、(4分)当分式的值为0时,x的值为( )
    A.0B.3C.﹣3D.±3
    6、(4分)在矩形中,是的中点,,垂足为,则用的代数式表示的长为()
    A.B.C.D.
    7、(4分)如图,矩形ABCD中,点E,F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若,,则图中阴影部分的面积为( )
    A.4B.6C.12D.24
    8、(4分)如图,矩形中,是边的中点,是边上一点,,,,则线段的长为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某公司10月份生产了万件产品,要使12月份的产品产量达到万件,设平均每月增长的百分率是,则可列方程____.
    10、(4分)已知y=1++,则2x+3y的平方根为______.
    11、(4分)在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______
    12、(4分)以正方形ABCD的边AD为一边作等边△ADE,则∠AEB的度数是________.
    13、(4分)已知一次函数()经过点,则不等式的解集为__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,是由绕点顺时针旋转得到的,连结交斜边于点,的延长线交于点.
    (1)若,,求;
    (2)证明:;
    (3)设,试探索满足什么关系时,与是全等三角形,并说明理由.
    15、(8分)如图,四边形ABCD为矩形,C点在轴上,A点在轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).
    (1)求G点坐标
    (2)求直线EF解析式
    (3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由
    16、(8分)解不等式组并求出其整数解
    17、(10分)如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
    (1)求点A,点B的坐标;
    (2)求△ABC的面积;
    (3)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.
    18、(10分)化简或求值:
    (1)化简:;
    (2)先化简,再求值:,其中.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)甲、乙两支足球队,每支球队队员身高数据的平均数都是1.70米,方差分别为S甲2=0.29,S乙2=0.35,其身高较整齐的是 球队.
    20、(4分)分解因式:
    21、(4分)一元二次方程x2﹣4=0的解是._________
    22、(4分)三角形的各边分别为8cm 、10cm和12cm ,连结各边中点所成三角形的周长=_____
    23、(4分)已知,是关于的一元二次方程的两个实根,且满足,则的值等于__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在矩形ABCD中,AC、BD相交于点O,过点A作BD的平行线AE交CB的延长线于点E.
    (1)求证:BE=BC;
    (2)过点C作CF⊥BD于点F,并延长CF交AE于点G,连接OG.若BF=3,CF=6,求四边形BOGE的周长.
    25、(10分)如图,△ABC中,∠ACB=Rt∠,AB=,BC=,求斜边AB上的高CD.
    26、(12分)(1)计算:
    (2)计算:
    (3)求不等式组的整数解.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.
    【详解】
    解:由图形可得,
    从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,
    从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,
    从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,
    故(1)中函数图象符合题意,
    故选:A.
    本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
    2、B
    【解析】
    由已知可得,EF是三角形DMN的中位线,所以,当DM⊥AB时,DM最短,此时EF最小.
    【详解】
    连接DM,
    因为,E、F分别为DN、MN的中点,
    所以,EF是三角形DMN的中位线,
    所以,EF=,
    当DM⊥AB时,DM最短,此时EF最小.
    因为,,
    所以,DM=AM,
    所以,由勾股定理可得AM=2,此时 EF==.
    故选B
    本题考核知识点:三角形中位线,平行四边形,勾股定理.解题关键点:巧用垂线段最短性质.
    3、B
    【解析】
    分析:根据菱形的性质可求得其边长,根据面积公式即可得到其周面积.
    详解:根据菱形对角线的性质,可知OA=4,OB=3,由勾股定理可知AB=5,
    根据菱形的面积公式可知,它的面积=6×8÷2=1.
    故选B.

    点睛:本题主要考查了菱形的面积的计算方法:面积=两条对角线的积的一半.
    4、D
    【解析】
    根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.
    【详解】
    当12,13为两条直角边时,
    第三边==,
    当13,12分别是斜边和一直角边时,
    第三边==1.
    故选D.
    本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.
    5、B
    【解析】
    分式的值为0,则分子为0,分母不为0,列方程组即可求解.
    解:根据题意得,,
    解得,x=3;
    故选B.
    6、B
    【解析】
    如图连接DH,根据面积和相等列方程求解.
    【详解】
    解:如图所示连接DH,AB=m,BC=4,BH=2,
    则矩形面积=4m, AH=,
    则矩形ABCD=三角形ABH+三角形AHD+三角形DHC,
    则4m=m+DE×+m,
    解得DE=.
    本题考查勾股定理和矩形性质,能够做出辅助线是解题关键.
    7、C
    【解析】
    由题意可知,,
    ,所以阴影部分的面积就等于矩形面积的一半.
    【详解】
    解:由题意可知,,
    故答案为:C
    本题考查了与矩形有关的面积问题,确定所求面积与矩形面积的数量关系是解题的关键.
    8、A
    【解析】
    延长﹑交于点,先证得得出,,再由勾股定理得,然后设,根据勾股定理列出方程得解.
    【详解】
    解:延长﹑交于点,
    则,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴由勾股定理得,
    设,
    在和中,
    则,
    解得.
    故选:A
    本题考查了勾股定理的应用,添加辅助线构造全等三角形,运用勾股定理列出方程是解本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、100(1+x)2=121
    【解析】
    设平均每月增长的百分率是x,那么11月份的产品产量为100(1+x)万件,2月份的产品产量为100(1+x)(1+x),然后根据2月份的产品产量达到121万件即可列出方程,解方程即可.
    【详解】
    解:设平均每月增长的百分率是x,依题意得:
    100(1+x)2=121
    故答案为100(1+x)2=121
    本题考查了利用一元二次方程解增长率问题.
    10、±2
    【解析】
    先根据二次根式有意义的条件求出x的值,进而得出y的值,根据平方根的定义即可得出结论.
    【详解】
    解:由题意得,,



    的平方根为.
    故答案为.
    本题考查二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解题的关键
    11、8或
    【解析】
    分CE:BE=1:3和BE:CE=1:3两种情况分别讨论.
    【详解】
    解:(1)当CE:BE=1:3时,如图:
    ∵四边形ABCD是矩形,
    ∴∠BAD=∠B=90º,
    ∴∠BAE=∠BEA=45º,
    ∴BE=AB=2,
    ∵CE:BE=1:3,
    ∴CE=,
    ∴BC=2+=;
    (2)当BE:CE=1:3时,如图:
    同(1)可求出BE=2,
    ∵BE:CE=1:3,
    ∴CE=6,
    ∴BC=2+6=8.
    故答案为8或.
    本题考查了矩形的性质.
    12、75˚或15˚
    【解析】
    解答本题时要考虑两种情况,E点在正方形内和外两种情况,即∠AEB为锐角和钝角两种情况.
    【详解】
    解:当点E在正方形ABCD外侧时,
    ∵正方形ABCD,
    ∴∠BAD=90°,AB=AD,
    又∵△ADE是正三角形,
    ∴AE=AD,∠DAE=60°,
    ∴△ABE是等腰三角形,∠BAE=90°+60°=150°,
    ∴∠ABE=∠AEB=15°;
    当点E在正方形ABCD内侧时,
    ∵正方形ABCD,
    ∴∠BAD=90°,AB=AD,
    ∵等边△AED,
    ∴∠EAD=60°,AD=AE=AB,
    ∴∠BAE=90°-60°=30°,

    故答案为:15°或75°.
    此题主要考查了正方形和等边三角形的性质,同时也利用了三角形的内角和,解题首先利用正方形和等边三角形的性质证明等腰三角形,然后利用等腰三角形的性质即可解决问题.本题要分两种情况,这是解题的关键.
    13、
    【解析】
    先把(-1,0)代入y=kx+b得b=k,则k(x-3)+b<0化为k(x-3)+k<0,然后解关于x的不等式即可.
    【详解】
    解:把(-1,0)代入y=kx+b得-k+b=0,解b=k,
    则k(x-3)+b<0化为k(x-3)+k<0,
    而k<0,
    所以x-3+1>0,
    解得x>1.
    故答案为x>1.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)见解析;(3),见解析
    【解析】
    (1)根据旋转的性质可以证得:△ACC′∽△ABB′,即可求解;
    (2)根据旋转的性质可以证得:AC=AC′,AB=AB′,∠CAB=∠C′AB′,再根据∠AEC=∠FEB即可证明两个三角形相似;
    (3)当β=2α时,△ACE≌△FBE.易证∠ABC=∠BCE,再根据CE=BE,即可证得.
    【详解】
    (1)解:∵AC=AC′,AB=AB′,

    由旋转可知:∠CAB=∠C′AB′,
    ∴∠CAB+∠EAC′=∠C′AB′+∠EAC′,即∠CAC′=∠BAB′,
    又∵∠ACB=∠AC′B′=90°,
    ∴△ACC′∽△ABB′,
    ∵AC=3,AB=4,
    ∴ ;
    (2)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,
    ∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,
    ∴∠CAC′=∠BAB′,
    ∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,
    ∴∠ACC′=∠ABB′,
    又∵∠AEC=∠FEB,
    ∴△ACE∽△FBE.
    (3)解:当β=2α时,△ACE≌△FBE.理由:
    在△ACC′中,

    ∵AC=AC′,
    ∴∠ACC′=∠AC′C= =90°-α,
    在Rt△ABC中,
    ∠ACC′+∠BCE=90°,
    即90°-α+∠BCE=90°,
    ∴∠BCE=90°-90°+α=α,
    ∵∠ABC=α,
    ∴∠ABC=∠BCE,
    ∴CE=BE,
    由(2)知:△ACE∽△FBE,
    ∴△ACE≌△FBE.
    此题考查了相似三角形的性质,三角形全等的判定与应用,正确理解图形旋转的性质是解题的关键.
    15、(1)G(0,4-);(2);(3).
    【解析】
    1(1)由F(1,4),B(3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在Rt△AGF中,利用勾股定理求出 ,那么OG=OA-AG=4-,于是G(0,4-);
    (2)先在Rt△AGF中,由 ,得出∠AFG=60°,再由折叠的性质得出∠GFE=∠BFE=60°,解Rt△BFE,求出BE=BF tan60°=2,那么CE=4-2,E(3,4-2).设直线EF的表达式为y=kx+b,将E(3,4-2),F(1,4)代入,利用待定系数法即可求出直线EF的解析.(3)因为M、N均为动点,只有F、G已经确定,所以可从此入手,结合图形,按照FG为一边,N点在x轴上;FG为一边,N点在y轴上;FG为对角线的思路,顺序探究可能的平行四边形的形状.确定平行四边形的位置与形状之后,利用平行四边形及平移的性质求得M点的坐标.
    【详解】
    解:(1)∵F(1,4),B(3,4),
    ∴AF=1,BF=2,
    由折叠的性质得:GF=BF=2,
    在Rt△AGF中,由勾股定理得,
    ∵B(3,4),
    ∴OA=4,
    ∴OG=4-,
    ∴G(0,4-);
    (2)在Rt△AGF中,
    ∵ ,
    ∴∠AFG=60°,由折叠的性质得知:∠GFE=∠BFE=60°,
    在Rt△BFE中,
    ∵BE=BFtan60°=2,
    .CE=4-2,
    .E(3,4-2).
    设直线EF的表达式为y=kx+b,
    ∵E(3,4-2),F(1,4),
    ∴ 解得
    ∴ ;
    (3)若以M、N、F、G为顶点的四边形是平行四边形,则分如下四种情况:
    ①FG为平行四边形的一边,N点在x轴上,GFMN为平行四边形,如图1所示.
    过点G作EF的平行线,交x轴于点N1,再过点N:作GF的平行线,交EF于点M,得平行四边形GFM1N1.
    ∵GN1∥EF,直线EF的解析式为
    ∴直线GN1的解析式为,
    当y=0时, .
    ∵GFM1N1是平行四边形,且G(0,4-),F(1,4),N1( ,0),
    ∴M,( ,);
    ②FG为平行四边形的一边,N点在x轴上,GFNM为平行四边形,如图2所示.
    ∵GFN2M2为平行四边形,
    ∴GN₂与FM2互相平分.
    ∴G(0,4-),N2点纵坐标为0
    ∴GN:中点的纵坐标为 ,
    设GN₂中点的坐标为(x,).
    ∵GN2中点与FM2中点重合,

    ∴x=
    ∵.GN2的中点的坐标为(),
    .∴N2点的坐标为(,0).
    ∵GFN2M2为平行四边形,且G(0,4-),F(1,4),N2(,0),
    ∴M2();
    ③FG为平行四边形的一边,N点在y轴上,GFNM为平行四边形,如图3所示.
    ∵GFN3M3为平行四边形,.
    ∴GN3与FM3互相平分.
    ∵G(0,4-),N2点横坐标为0,
    .∴GN3中点的横坐标为0,
    ∴F与M3的横坐标互为相反数,
    ∴M3的横坐标为-1,
    当x=-1时,y=,
    ∴M3(-1,4+2);
    ④FG为平行四边形的对角线,GMFN为平行四边形,如图4所示.
    过点G作EF的平行线,交x轴于点N4,连结N4与GF的中点并延长,交EF于点M。,得平行四边形GM4FN4
    ∵G(0,4-),F(1,4),
    ∴FG中点坐标为(),
    ∵M4N4的中点与FG的中点重合,且N4的纵坐标为0,
    .∴M4的纵坐标为8-.
    5-45解方程 ,得
    ∴M4().
    综上所述,直线EF上存在点M,使以M,N,F,G为顶点的四边形是平行四边形,此时M点坐标为: 。
    本题是一次函数的综合题,涉及到的考点包括待定系数法求一次函数的解析式,矩形、平行四边形的性质,轴对称、平移的性质,勾股定理等,对解题能力要求较高.难点在于第(3)问,这是一个存在性问题,注意平行四边形有四种可能的情形,需要一一分析并求解,避免遗漏.
    16、;其整数解为大于的所有整数.
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【详解】
    解不等式,得:,
    解不等式,得:,
    则不等式的解集为,
    不等式的整数解为大于的所有整数.
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    17、 (1)A(﹣4,0),B(2,0);(2)S△ABC=12;(3)当x=﹣2时,△ACP最大面积4
    【解析】
    (1)令y=0,解一元二次方程可得A,B坐标.
    (2)求出C点坐标可求,△ABC的面积.
    (3)作PD⊥AO交AC于D,设P的横坐标为t,用t表示PD和△ACP的面积,得到关于t的函数,根据二次函数的最值的求法,可求△ACP面积的最大值.
    【详解】
    解:(1)设y=0,则0=﹣x2﹣x+4
    ∴x1=﹣4,x2=2
    ∴A(﹣4,0),B(2,0)
    (2)令x=0,可得y=4
    ∴C(0,4)
    ∴AB=6,CO=4
    ∴S△ABC=×6×4=12
    (3)如图:作PD⊥AO交AC于D
    设AC解析式y=kx+b

    解得:
    ∴AC解析式y=x+4
    设P(t,﹣ t2﹣t+4)则D(t,t+4)
    ∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2
    ∴S△ACP=PD×4=﹣(t+2)2+4
    ∴当x=﹣2时,△ACP最大面积4
    本题主要考查二次函数综合题,重在基础知识考查,熟悉掌握是关键.
    18、(1);(2),.
    【解析】
    (1)根据分式的减法和乘法可以化简题目中的式子;
    (2)根据分式的乘法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.
    【详解】
    解:(1)


    (2)
    当时,原式.
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、甲.
    【解析】
    试题分析:根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    解:∵S甲2<S乙2,
    ∴甲队整齐.
    故填甲.
    考点:方差;算术平均数.
    20、
    【解析】
    试题分析:首先提取公因式b,然后根据完全平方公式进行因式分解.原式==
    考点:(1)因式分解;(2)提取公因式法;(3)完全平方公式
    21、x=±1
    【解析】
    移项得x1=4,
    ∴x=±1.
    故答案是:x=±1.
    22、15 cm
    【解析】
    由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.
    【详解】
    如图,
    D,E,F分别是△ABC的三边的中点,
    则DE=AC,DF=BC,EF=AB,
    ∴△DEF的周长=DE+DF+EF= (AC+BC+AB)= ×(8+10+12)cm=15cm,
    故答案为15 cm.
    本题考查三角形中位线定理,解题的关键是掌握三角形中位线定理.
    23、-1
    【解析】
    根据根的存在情况限定△≥0;再将根与系数的关系代入化简的式子x1•x2+2(x2+x1)+4=13,即可求解;
    【详解】
    解:∵x1,x2是关于x一元二次方程x2+(3a−1)x+2a2−1=0的两个实根,
    ∴△=a2−6a+5≥0
    ∴a≥5或a≤1;
    ∴x1+x2=−(3a−1)=1−3a,x1•x2=2a2−1,
    ∵(x1+2)(x2+2)=13,
    ∴整理得:x1•x2+2(x2+x1)+4=13,
    ∴2a2−1+2(1−3a)+4=13,
    ∴a=4或a=−1,
    ∴a=−1;
    故答案为−1.
    本题考查一元二次方程根与系数的关系;熟练掌握根与系数的关系,一元二次方程的解法是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)详见解析;(2)3+1.
    【解析】
    (1)利用平行线等分线段定理证明即可.
    (2)根据勾股定理得BC=,易证△CBF∽△DBC,得BD=15,根据矩形的性质和直角三角形的性质得OG=,利用平行线等分线段定理得BE=3,由中位线的性质得EG=6,进而即可求解.
    【详解】
    (1)∵四边形ABCD是矩形,
    ∴OC=OA,
    ∵OB∥AE,
    ∴BC=BE;
    (2)∵CF⊥BD,
    ∴∠CFB=90°,
    在Rt△BCF中,BC=,
    ∵四边形ABCD是矩形,
    ∴∠BCD=90°=∠BFC,AC=BD,
    ∵∠CBF=∠DBC,
    ∴△CBF∽△DBC,
    ∴,
    ∴BD==15,OB=OD=,
    ∴AC=BD=15,
    ∵CF⊥BD,BD∥AE,
    ∴CG⊥AE,
    ∴∠AGC=90°,
    ∵OC=OA,
    ∴OG=AC=,
    ∵OC=OA,OF∥AG,
    ∴CF=FG,
    ∴BC=BE=3,
    ∴EG=2BF=6,
    ∴四边形BOGE的周长=3+6++=3+1.
    本题主要考查矩形的性质定理,平行线等分线段定理,直角三角形的性质定理,勾股定理,相似三角形的判定和性质定理,掌握上述定理,是解题的关键.
    25、CD=
    【解析】
    先根据勾股定理求出AC,再根据等面积法即可求得结果.
    【详解】
    解:由题意得,


    解得CD=
    本题考查的是二次根式的应用,勾股定理的应用,解答本题的关键是掌握好利用等面积法求直角三角形的斜边上的高.
    26、(1);(2);(3)不等式组的整数解是0.
    【解析】
    (1)先把二次根式化为最简二次根式,然后合并即可;
    (2)利用完全平方公式和平方差公式计算;
    (3)分别解两个不等式得到和x

    相关试卷

    2024年广西河池天峨县九年级数学第一学期开学经典试题【含答案】:

    这是一份2024年广西河池天峨县九年级数学第一学期开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广西河池市天峨县九上数学开学教学质量检测试题【含答案】:

    这是一份2024-2025学年广西河池市天峨县九上数学开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年广西壮族自治区河池天峨县数学九年级第一学期期末监测试题含答案:

    这是一份2023-2024学年广西壮族自治区河池天峨县数学九年级第一学期期末监测试题含答案,共10页。试卷主要包含了考生必须保证答题卡的整洁,平面直角坐标系内一点P,下列运算中,正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map