![广州大附属中学2024年数学九上开学学业水平测试试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16269702/0-1729377843688/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广州大附属中学2024年数学九上开学学业水平测试试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16269702/0-1729377843721/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广州大附属中学2024年数学九上开学学业水平测试试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16269702/0-1729377843747/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广州大附属中学2024年数学九上开学学业水平测试试题【含答案】
展开
这是一份广州大附属中学2024年数学九上开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列语句中,属于命题的是( )
A.任何一元二次方程都有实数解B.作直线 AB 的平行线
C.∠1 与∠2 相等吗D.若 2a2=9,求 a 的值
2、(4分)顺次连结一个平行四边形的各边中点所得四边形的形状是( )
A.平行四边形B.矩形C.菱形D.正方形
3、(4分)如图,在平行四边形中,对角线、相交于,,、、分别是、、的中点,下列结论:
①;②;③;④平分;⑤四边形是菱形.
其中正确的是( )
A.①②③B.①③④C.①②⑤D.②③⑤
4、(4分)一个多边形的每个内角均为120°,则这个多边形是( )
A.四边形B.五边形C.六边形D.七边形
5、(4分)下列函数:①;②;③;④;⑤.其中,是一次函数的有( )
A.1个B.2个C.3个D.4个
6、(4分)直线上两点的坐标分别是,,则这条直线所对应的一次函数的解析式为( )
A.B.C.D.
7、(4分)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数( )
A.8人B.9人C.10人D.11人
8、(4分)若关于的方程产生增根,则的值是( )
A.B.C.或D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,将直线y=2x-1向上平移动4个单位长度后,所得直线的解析式为____________.
10、(4分)如图,等边△ABC内有一点O,OA=3,OB=4,OC=5,以点B为旋转中心将BO逆时针旋转60°得到线段,连接,下列结论:①可以看成是△BOC绕点B逆时针旋转60°得到的;②点O与的距离为5;③∠AOB=150°;④S四边形AOBO′=6+4;⑤=6+.其中正确的结论有_____.(填正确序号)
11、(4分)不等式5﹣2x>﹣3的解集是_____.
12、(4分)如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为_____.
13、(4分)如图,在菱形OABC中,点B在x轴上,点A的坐标为,则点C的坐标为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程
(1) (2) x(3-2x)= 4 x-6
15、(8分)化简.
16、(8分)如图1,正方形ABCD的边长为4厘米,E为AD边的中点,F为AB边上一点,动点P从点B出发,沿B→C→D→E,向终点E以每秒a厘米的速度运动,设运动时间为t秒,△PBF的面积记为S.S与t的部分函数图象如图2所示,已知点M(1,)、N(5,6)在S与t的函数图象上.
(1)求线段BF的长及a的值;
(2)写出S与t的函数关系式,并补全该函数图象;
(3)当t为多少时,△PBF的面积S为4.
17、(10分)已知某市2018年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.
(1)当x≥50时,求y关于x的函数关系式;
(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量.
18、(10分)如图,在平面直角坐标系 中,的直角边在轴上,.点的坐标为,点的坐标为,是边的中点,函数 的图象经过点.
(1)求的值;
(2)将绕某个点旋转后得到(点 ,, 的对应点分别为点,,),且 在轴上,点在函数的图象上,求直线的表达式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是_________.
20、(4分)若x是的整数部分,则的值是 .
21、(4分)已知点A(﹣1,a),B(2,b)在函数y=﹣3x+4的图象上,则a与b的大小关系是_____.
22、(4分)将正比例函数的图象向上平移3个单位,所得的直线不经过第______象限.
23、(4分)如图,在平面直角坐标系中,矩形的边一条动直线分别与将于点,且将矩形分为面积相等的两部分,则点到动直线的距离的最大值为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420 km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2 h,求汽车原来的平均速度.
25、(10分)(问题原型)在图①的矩形中,点、、、分别在、、、上,若,则称四边形为矩形的反射四边形;
(操作与探索)在图②,图③的矩形中,,,点、分别在、边的格点上,试利用正方形网格分别在图②、图③上作矩形的反射四边形;
(发现与应用)由前面的操作可以发现,一个矩形有不同的反射四边形,且这些反射四边形的周长都相等.若在图①的矩形中,,,则其反射四边形的周长为______.
26、(12分)某汽车制造商对新投入市场的两款汽车进行了调查,这两款汽车的各项得分如下表所示:
(得分说明:3分﹣﹣极佳,2分﹣﹣良好,1分﹣﹣尚可接受)
(1)技术员认为安全性能、省油效能、外观吸引力、内部配备这四项的占比分别为30%,30%,20%,20%,并由此计算得到A型汽车的综合得分为2.2,B型汽车的综合得分为_____;
(2)请你写出一种各项的占比方式,使得A型汽车的综合得分高于B型汽车的综合得分.(说明:每一项的占比大于0,各项占比的和为100%)
答:安全性能:_____,省油效能:_____,外观吸引力:_____,内部配备:_____.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
用命题的定义进行判断即可(命题就是判断一件事情的句子).
【详解】
解:A项是用语言可以判断真假的陈述句,符合命题定义,是命题,B、C、D三项均不是判断一件事情的句子,都不是命题,故选A.
本题考查了命题的定义:命题就是判断一件事情的句子. 一般来说,命题都可以表示成“如果…那么…”的形式,如本题中的A项就可表示成“如果一个方程是一元二次方程,那么这个方程有实数解”,而其它三项皆不可.
2、A
【解析】
试题分析:连接平行四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.
解:顺次连接平行四边形ABCD各边中点所得四边形必定是:平行四边形,
理由如下:
(如图)根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,
∴EH=FG,EH∥FG,
∴四边形EFGH是平行四边形.
故选A.
考点:中点四边形.
3、B
【解析】
由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断②错误,通过证四边形BGFE是平行四边形,可判断③正确,由平行线的性质和等腰三角形的性质可判断④正确,由∠BAC≠30°可判断⑤错误.
【详解】
解:∵四边形ABCD是平行四边形
∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,
又∵BD=2AD,
∴OB=BC=OD=DA,且点E 是OC中点,
∴BE⊥AC,故①正确,
∵E、F分别是OC、OD的中点,
∴EF∥CD,EF=CD,
∵点G是Rt△ABE斜边AB上的中点,
∴GE=AB=AG=BG
∴EG=EF=AG=BG,无法证明GE=GF,故②错误,
∵BG=EF,AB∥CD∥EF
∴四边形BGFE是平行四边形,
∴GF=BE,且BG=EF,GE=GE,
∴△BGE≌△FEG(SSS)故③正确
∵EF∥CD∥AB,
∴∠BAC=∠ACD=∠AEF,
∵AG=GE,
∴∠GAE=∠AEG,
∴∠AEG=∠AEF,
∴AE平分∠GEF,故④正确,
若四边形BEFG是菱形
∴BE=BG=AB,
∴∠BAC=30°
与题意不符合,故⑤错误
故选:B.
本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.
4、C
【解析】
由题意得,180°(n-2)=120°,
解得n=6.故选C.
5、C
【解析】
根据一次函数的定义逐一判断即可.
【详解】
①是一次函数;
②是一次函数;
③是一次函数;
④不是一次函数;
⑤不是一次函数.
故选C.
此题考查的是一次函数的判断,掌握一次函数的定义是解决此题的关键.
6、A
【解析】
利用待定系数法求函数解析式.
【详解】
解:∵直线y=kx+b经过点P(-20,5),Q(10,20),
∴ ,
解得,
所以,直线解析式为.
故选:A.
本题主要考查待定系数法求函数解析式,是中考的热点之一,需要熟练掌握.解题的关键是掌握待定系数法.
7、B
【解析】
试题分析:设每轮传染中平均一个人传染的人数为x人,第一轮过后有(1+x)个人感染,第二轮过后有(1+x)+x(1+x)个人感染,那么由题意可知1+x+x(1+x)=100,整理得,,解得x=9或-11, x=-11不符合题意,舍去.那么每轮传染中平均一个人传染的人数为9人.故选B.
考点:一元二次方程的应用.
8、B
【解析】
根据方程有增根得到x=3,将x=3代入化简后的整式方程中即可求出答案.
【详解】
将方程去分母得x-1=m,
∵方程产生增根,
∴x=3,
将x=3代入x-1=m,得m=2,
故选:B.
此题考查分式方程的解的情况,分式方程的增根是使分母为0的未知数的值,正确理解增根是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=2x+1
【解析】
根据直线平移k值不变,只有b发生改变进行解答即可.
【详解】
由题意得:平移后的解析式为:y=2x-1+4,
y=2x+1,
故填:y=2x+1.
本题考查了一次函数图象与几何变换,在解题时,紧紧抓住直线平移后k值不变这一性质即可.
10、①③⑤
【解析】
如图,首先证明△OBO′为等边三角形,得到OO′=OB=4,故选项②错误;证明△ABO′≌△CBO,得到选项①正确;运用勾股定理逆定理证明△AOO′为直角三角形,求出∠AOB的度数,得到选项③正确;运用面积公式求出四边形AOBO′的面积,可判断选项④错误;将△AOB绕A点逆时针旋转60°至△AO″C,可得△AOO″是边长为3的等边三角形,△COO″是边长为3,4,5的直角三角形,再根据S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″进行计算即可判断选项⑤正确.
【详解】
解:如下图,连接OO′,
∵△ABC为等边三角形,
∴∠ABC=60°,AB=CB;
由题意得:∠OBO′=60°,OB=O′B,
∴△OBO′为等边三角形,∠ABO′=∠CBO,
∴OO′=OB=4;∠BOO′=60°,
∴选项②错误;
在△ABO′与△CBO中,,
∴△ABO′≌△CBO(SAS),
∴AO′=OC=5,
可以看成是△BOC绕点B逆时针旋转60°得到的,
∴选项①正确;
在△AOO′中,∵32+42=52,
∴△AOO′为直角三角形,
∴∠AOO′=90°,∠AOB=90°+60°=150°,
∴选项③正确;
∵S四边形AOBO′=×42×sin60°+×3×4=4+6,
∴选项④错误;
如下图,将△AOB绕A点逆时针旋转60°至△AO″C,连接OO″,
同理可得,△AOO″是边长为3的等边三角形,
△COO″是边长为3,4,5的直角三角形,
∴S△AOC+S△AOB
=S四边形AOCO″
=S△COO″+S△AOO″
=×3×4+×32×sin60°
=6+.
故⑤正确;
故答案为:①③⑤.
本题考查旋转的性质、三角形全等的判定和性质、等边三角形的判定和性质、勾股定理的逆定理,熟练掌握旋转的性质、等边三角形的判定和性质、勾股定理的逆定理的应用是解题的关键.
11、x<1
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
【详解】
解:﹣2x>﹣3﹣5,
﹣2x>﹣8,
x<1,
故答案为x<1.
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
12、
【解析】
分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM=1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.
【详解】
解:过点E作ME⊥AD,延长ME交BC与N,
∵四边形ABCD是矩形
∴AD∥BC,且ME⊥DA
∴EN⊥BC 且∠A=90°=∠ABC=90°
∴四边形ABNM是矩形
∴AB=MN=5,AM=BN
若ME:EN=1:4,如图1
∵ME:EN=1:4,MN=5
∴ME=1,EN=4
∵折叠
∴BE=AB=5,AP=PE
在Rt△BEN中,BN==3
∴AM=3
在Rt△PME中,PE2=ME2+PM2
AP2=(3﹣AP)2+1
解得AP=
若ME:EN=4:1,则EN=1,ME=4,如 图2
在Rt△BEN中,BN==2
∴AM=2
在Rt△PME中,PE2=ME2+PM2
AP2=(2﹣AP )2+16
解得AP=
若点E在矩形外,如图
∵EN:EM=1:4
∴EN=,EM=
在Rt△BEN中,BN==
∴AM=
在Rt△PME中,PE2=ME2+PM2
AP2=(AP﹣)2+()2
解得:AP=5
故答案为,,5.
本题考查矩形的性质、折叠的性质和勾股定理,注意分情况讨论是解题关键.
13、
【解析】
根据轴对称图形的性质即可解决问题.
【详解】
四边形OABC是菱形,
、C关于直线OB对称,
,
,
故答案为.
本题考查菱形的性质、坐标与图形的性质等知识,解题的关键是熟练掌握菱形的性质,利用菱形是轴对称图形解决问题.
三、解答题(本大题共5个小题,共48分)
14、 (1) ;(2) .
【解析】
(1)将方程移项得,在等式两边同时加上一次项系数一半的平方1,即可得出结论;(2)将方程移项得,提公因式后,即可得出结论.
【详解】
解:(1),
移项,得:,
等式两边同时加1,得:,
即:,
解得:,,
(2),
移项,得:,
提公因式,得:,
解得:,,
故答案为:(1),;(2),.
本题考查配方法、因式分解法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.因式分解法的一般步骤:(1)移项,将方程右边化为0;(2)再把左边运用因式分解法化为两个一次因式的积;(3)分别令每个因式等于零,得到一元一次方程组;(4)分别解这两个一元一次方程,得到方程的解.
15、
【解析】
解:原式=.
先将括号里面的通分后,将除法转换成乘法,约分化简.
16、 (1)BF=3,a=1;(2)当0≤t≤4时,S=t;当4<t≤8时,S=6;当8<t≤10时,S=18-t.图像见解析;(3)t=或.
【解析】
试题分析:(1)根据图2可以看出,当t=5时,P在CD上,此时△PBF的高就为正方形的边长,底为BF,利用面积等于6,可求得BF,再根据t=1时,△PBF的面积为,可求得a的值;(2)由点P运动过程,可发现△PBF的面积有3种情况,分别是:当0≤t≤4时,此时P在AB上,当4<t≤8时,此时P在CD上,当8<t≤10时,此时P在AD上,分别求出解析式即可.再根据解析式可补全图像;(3)把S=4分别代入解析式中即可求出t值.
试题解析:(1)由题意可知,当t=5时,S△PBF=×4BF=6,BF=3.当t=1时,S△PBF=at×3=,a=1;(2)当0≤t≤4时,设S=kt,把(1,)代入得,k=,S=t;当4<t≤8时,S=6;当8<t≤10时,设S=mt+b,把(8,6),(10,3)代入,得,解得,S=18-t.综上所述,当0≤t≤4时,S=t;当4<t≤8时,S=6;当8<t≤10时,S=18-t,据此可补全图像,如下图:
(3)当S=4时,t=4,t=;18-t=4,t=.∴当t=或 t=时△PBF的面积S为4.
考点:1分段函数;2分类讨论;3数形结合.
17、(1)y=6x﹣100;(2)1吨
【解析】
(1)设y关于x的函数关系式y=kx+b,然后利用待定系数法求一次函数解析式解答;
(2)把水费620元代入函数关系式解方程即可.
【详解】
(1)设y关于x的函数关系式y=kx+b,则:
解得:,所以,y关于x的函数关系式是y=6x﹣100;
(2)由图可知,当y=620时,x>50,所以,6x﹣100=620,解得:x=1.
答:该企业2018年10月份的用水量为1吨.
本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.
18、(1)5;(4)y=4x-1.
【解析】
(1)根据直角三角形的性质和坐标与图形的特点求得点的坐标,将其代入反比例函数解析式求得的值;
(4)根据旋转的性质推知:,故其对应边、角相等:,,,由函数图象上点的坐标特征得到:,.结合得到,利用待定系数法求得结果.
【详解】
(1)∵Rt△ABC的直角边AB在x轴上,∠ABC=90°,点C的坐标为(5,4),
∴点B的坐标为(5,0),CB=4.
∵M是BC边的中点,
∴点M的坐标为(5,4).
∵函数的图像进过点M,
∴k=5×4=5.
(4)∵△ABC绕某个点旋转180°后得到△DEF,
∴△DEF≌△ABC.
∴DE=AB,EF=BC,∠DEF=∠ABC=90°.
∵点A的坐标为(1,0),点B的坐标为(5,0),
∴AB=4.
∴DE=4.
∵EF在y轴上,
∴点D的横坐标为4.
∵点D在函数的图象上,
当x=4时,y=5.
∴点D的坐标为(4,5).
∴点E的坐标为(0,5).
∵EF=BC=4,
∴点F的坐标为(0,-1).
设直线DF的表达式为y=ax+b,将点D,F的坐标代入,
得 解得 .
∴直线DF的表达式为y=4x-1.
本题考查了待定系数法求一次函数解析式,反比例函数图象上点的坐标特征,旋转的性质.解题时,注意函数思想和数形结合数学思想的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 (7,3)
【解析】
分析:由平行四边形的性质可得AB∥CD,AB=CD,可得点C的横坐标等于点D的横坐标+AB的长,点C的纵坐标等于点D的纵坐标.
详解:根据题意得,AB=5,所以CD=5,所以C(2+5,3),即C(7,3).
故答案为(7,3).
点睛:在平面直角坐标系中,已知平行四边形的三个顶点的坐标,求第四个顶点的坐标时,可利用平行四边形的对边平行且相等求解.
20、1
【解析】
3
相关试卷
这是一份广东省广州市华南师范大附属中学2024年九上数学开学监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份北京市中学国人民大附中2025届九上数学开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年重庆市西南大附中数学九上开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)