贵州黔西南州望谟三中学2024-2025学年数学九年级第一学期开学检测试题【含答案】
展开
这是一份贵州黔西南州望谟三中学2024-2025学年数学九年级第一学期开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形中,对角线交于点,并且,点是边上一动点,延长交于点,当点从点向点移动过程中(点与点,不重合),则四边形的变化是( )
A.平行四边形→菱形→平行四边形→矩形→平行四边形
B.平行四边形→矩形→平行四边形→菱形→平行四边形
C.平行四边形→矩形→平行四边形→正方形→平行四边形
D.平行四边形→矩形→菱形→正方形→平行四边形
2、(4分)为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均20平方厘米提高到24.2平方厘米,每年的增长率相同,设为x,则可列方程是( )
A.(1+x)2=24.2B.20(1+x)2=24.2
C.(1﹣x)2=24.2D.20(1﹣x)2=24.2
3、(4分)如图,在矩形中,,,点是边上一点,点是矩形内一点,,则的最小值是( )
A.3B.4C.5D.
4、(4分)下列式子中,属于最简二次根式的是( )
A.B.C.D.
5、(4分)二次根式有意义的条件是
A.B.C.D.
6、(4分)与是同类二次根式的是( )
A.B.C.D.
7、(4分) “龟兔首次赛跑”之后,输了比赛的兔子总结惨痛教训后.决定和乌龟再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(表示乌龟从起点出发所行的时间,表示乌龟所行的路程,表示兔子所行的路程.下列说法中:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处上了乌龟.正确的有:( )
A.1个B.2个C.3个D.4个
8、(4分)如图,有一张直角三角形纸片,两条直角边,,将折叠,使点和点重合,折痕为,则的长为( )
A.1.8B.2.5C.3D.3.75
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.
10、(4分)若一组数据4,a,7,8,3的平均数是5,则这组数据的中位数是________.
11、(4分)如图,圆柱体的高为8cm,底面周长为4cm,小蚂蚁在圆柱表面爬行,从A点到B点,路线如图所示,则最短路程为_____.
12、(4分)如图,将三角形纸片(△ABC)进行折叠,使得点B与点A重合,点C与点A重合,压平出现折痕DE,FG,其中D,F分别在边AB,AC上,E,G在边BC上,若∠B=25°,∠C=45°,则∠EAG的度数是_____°.
13、(4分)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平行四边形ABCD中,点E.F分别在AB、CD上,AE=CF,连接AF,BF,DE,CE,分别交于H、G.
求证:(1)四边形AECF是平行四边形.(2)EF与GH互相平分.
15、(8分)解方程:.
16、(8分)一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点.
(1)求出该一次函数的表达式;
(2)画出该一次函数的图象;
(3)判断(﹣5,﹣4)是否在这个函数的图象上?
(4)求出该函数图象与坐标轴围成的三角形面积.
17、(10分)如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.
求证:(1)△BEG≌△DFH;
(2)四边形GEHF是平行四边形.
18、(10分)计算:
;
。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在●〇●〇〇●〇〇〇●〇〇〇〇●〇〇〇〇〇中,空心圈“〇”出现的频率是_____.
20、(4分)已知一次函数的图象经过两点,,则这个函数的表达式为__________.
21、(4分)分解因式______.
22、(4分)计算:-=________.
23、(4分)如图,边长为的正方形和边长为的正方形排放在一起,和分别是两个正方形的对称中心,则的面积为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”.
(1)已知:如图1,在“准等边四边形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC的长;
(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;
(3)如图2,在△ABC中,AB=AC=,∠BAC=90°.在AB的垂直平分线上是否存在点P,使得以A,B,C,P为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.
25、(10分)如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.
(1)求证:DF是线段AB的垂直平分线;
(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.
26、(12分)八年级380名师生参加户外拓展活动,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表
(1)设租用乙种客车x辆,租车总费用为y元求出y(元)与x(辆)之间的函数表达式;
(2)当乙种客车租用多少辆时,能保障所有的师生能参加户外拓展活动且租车费用最少,最少费用是多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据图形结合平行四边形、矩形、菱形的判定逐项进行判断即可.
【详解】
解:点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,
当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,
当15°<∠EOD<75°时,四边形AFCE为平行四边形,
当∠EOD=75°时,∠AEF=90°,四边形AFCE为矩形,
当75°<∠EOD<105°时,四边形AFCE为平行四边形,
故选A.
本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力.
2、B
【解析】
如果设年增长率为x,则可以根据“住房面积由现在的人均约为10平方厘米提高到14.1平方厘米”作为相等关系得到方程10(1+x)1=14.1.
【详解】
解:设每年的增长率为x,根据题意得10(1+x)1=14.1,故选:B.
本题考查列一元二次方程,解题的关键是读懂题意,由题意得到等式10(1+x)1=14.1.
3、A
【解析】
过点F作FH⊥BC,将的最小值转化为求EF+FH的最小值,易得答案.
【详解】
解:过点F作FH⊥BC,
∵,
∴在Rt△FHC中,FH=,
∴的最小值即EF+FH的最小值,
∴当E,F,H三点共线时,EF+FH取最小值,最小值为AB的长度3,
即的最小值为3,
故选A.
本题主要考查了含30°直角三角形的性质,通过作辅助线将所求线段进行转化是解题关键.
4、B
【解析】
根据最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式,可得答案.
【详解】
解:A、被开方数含能开得尽方的因数或因式,故A错误;;
B、被开方数5中不含开的尽方的因数,是最简二次根式,故B正确;
C、被开方数8=2×含能开得尽方的因数或因式,故C错误;
D、被开方数中含有分母,不是最简二次根式,故D错误;
故选:B.
本题考查了最简二次根式,最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式.
5、A
【解析】
根据:二次根式被开方数必须是非负数才有意义.
【详解】
由m-2≥0得,.
故选A
本题考核知识点:二次根式有意义条件. 解题关键点:熟记二次根式有意义条件.
6、B
【解析】
把各选项中的二次根式化为最简二次根式,然后根据同类二次根式的定义判断即可.
【详解】
A、与不是同类二次根式,故A错误;
B、与是同类二次根式,故B正确;
C、与不是同类二次根式,故C错误;
D、与不是同类二次根式,故D错误;
故选:B.
本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.
7、C
【解析】
根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.
【详解】
解:由图可得,
“龟兔再次赛跑”的路程为1000米,故①正确;
乌龟先出发,兔子在乌龟出发40分钟时出发,故②错误;
乌龟在途中休息了:40-30=10(分钟),故③正确;
当40≤x≤60,设y1=kx+b,
由题意得
,
解得
k=20,b=-200,
∴y1=20x-200(40≤x≤60).
当40≤x≤50,设y2=mx+n,
由题意得
,
解得
m=100,n=-4000,
∴y2=100x-4000(40≤x≤50).
当y1=y2时,兔子追上乌龟,
此时20x-200=100x-4000,
解得:x=47.5,
y1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.
故选:C.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
8、D
【解析】
设CD=x,则BD=AD=10-x.在Rt△ACD中运用勾股定理列方程,就可以求出CD的长.
【详解】
解:设CD=x,则BD=AD=10-x.
∵在Rt△ACD中,(10-x)2=x2+52,
100+x2-20x=x2+25,
∴20x=75,
解得:x=3.75,
∴CD=3.75.
故选:D.
本题主要考查了折叠问题和勾股定理的综合运用.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质,用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3或1.
【解析】
当为直角三角形时,有两种情况:
①当点落在矩形内部时,如答图1所示.
连结,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点、、共线,即沿折叠,使点落在对角线上的点处,则,,可计算出,设,则,,然后在中运用勾股定理可计算出.
②当点落在边上时,如答图2所示.此时四边形为正方形.
【详解】
解:当为直角三角形时,有两种情况:
①当点落在矩形内部时,如答图1所示.
连结,
在中,,,
,
沿折叠,使点落在点处,
,
当为直角三角形时,只能得到,
点、、共线,即沿折叠,使点落在对角线上的点处,如图,
,,
,
设,则,,
在中,
,
,
解得,
;
②当点落在边上时,如答图2所示.
此时为正方形,
.
综上所述,的长为3或1.
故答案为:3或1.
本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.
10、1
【解析】
先根据平均数的定义求出x的值,然后根据中位数的定义求解.
【详解】
由题意可知,(1+a+7+8+3)÷5=5,
a=3,
这组数据从小到大排列3,3,1,7,8,
所以,中位数是1.
故答案是:1.
考查平均数与中位数的意义.
平均数是指在一组数据中所有数据之和再除以数据的个数.
中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
11、10cm
【解析】
将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,从而求出解题中的AC,连接AB,根据两点之间线段最短可得小蚂蚁爬行的最短路程为此时AB的长,然后根据勾股定理即可求出结论.
【详解】
解:将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,如下图所示:AC=1.5×4=6cm,连接AB,根据两点之间线段最短,
∴小蚂蚁爬行的最短路程为此时AB的长
∵圆柱体的高为8cm,
∴BC=8cm
在Rt△ABC中,AB=cm
故答案为:10cm.
此题考查的是利用勾股定理求最短路径问题,将圆柱的侧面展开,根据两点之间线段最短即可找出最短路径,然后利用勾股定理求值是解决此题的关键.
12、40°
【解析】
依据三角形内角和定理,即可得到∠BAC的度数,再根据折叠的性质,即可得到∠BAE=∠B=25°,∠CAG=∠C=45°,进而得出∠EAG的度数.
【详解】
∵∠B=25°,∠C=45°,
∴∠BAC=180°−25°−45°=110°,
由折叠可得,∠BAE=∠B=25°,∠CAG=∠C=45°,
∴∠EAG=110°−(25°+45°)=40°,
故答案为:40°
此题考查三角形内角和定理,折叠的性质,解题关键在于得到∠BAC的度数
13、4.4×1
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
详解:44000000=4.4×1,
故答案为4.4×1.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
(1)根据四边形ABCD是平行四边形,由平行四边形的性质可得:,,
根据,利用平行四边形的判定定理可得:四边形AECF是平行四边形,
由得四边形AECF是平行四边形,根据平行四边形的性质可得:,
根据,,,可得:,,根据平行四边形的判定定理可得:四边形BFDE是平行四边形,再根据平行四边形的性质可得:,根据平行四边形的判定定理可得:四边形EGFH是平行四边形,由平行四边形的性质可得:
与GH互相平分.
【详解】
四边形ABCD是平行四边形,
,,
,
四边形AECF是平行四边形,
由得:四边形AECF是平行四边形,
,
,,,
,,
四边形BFDE是平行四边形,
,
四边形EGFH是平行四边形,
与GH互相平分.
本题主要考查平行四边形的判定定理和平行四边形的性质,解决本题的关键是要熟练掌握平行四边形的判定定理和平行四边形的性质.
15、
【解析】
先移项,再两边平方,即可得出一个一元二次方程,求出方程的解,最后进行检验即可.
【详解】
解:移项得:,
两边平方得:,
整理得:,
解得:,,
经检验不是原方程的解,舍去,
∴是原方程的解.
本题考查了解无理方程的应用,解此题的关键是能把无理方程转化成有理方程,注意:解无理方程一定要进行检验.
16、(1)y=3x﹣2;(2)图象见解析;(3)(﹣5,﹣4)不在这个函数的图象上;(4).
【解析】
(1)利用待定系数法即可求得;
(2)利用两点法画出直线即可;
(3)把x=﹣5代入解析式,即可判断;
(4)求得直线与坐标轴的交点,即可求得.
【详解】
解:(1)设一次函数的解析式为y=kx+b
∵一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点
∴,
解得:
∴一次函数的表达式为y=3x﹣2;
(2)描出A、B点,作出一次函数的图象如图:
(3)由(1)知,一次函数的表达式为y=3x﹣2
将x=﹣5代入此函数表达式中得,y=3×(﹣5)﹣2=﹣17≠﹣4
∴(﹣5,﹣4)不在这个函数的图象上;
(4)由(1)知,一次函数的表达式为y=3x﹣2
令x=0,则y=﹣2,令y=0,则3x﹣2=0,
∴x=,
∴该函数图象与坐标轴围成的三角形面积为:×2×=.
本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,一次函数的图象以及三角形的面积,熟练掌握待定系数法是解题的关键.
17、 (1)证明见解析;(2)证明见解析.
【解析】
(1)利用平行四边形的性质得出BG=DH,进而利用SAS得出△BEG≌△DFH;
(2)利用全等三角形的性质得出∠GEF=∠HFB,进而得出答案.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥DC,
∴∠ABE=∠CDF,
∵AG=CH,
∴BG=DH,
在△BEG和△DFH中,
,
∴△BEG≌△DFH(SAS);
(2)∵△BEG≌△DFH(SAS),
∴∠BEG=∠DFH,EG=FH,
∴∠GEF=∠HFB,
∴GE∥FH,
∴四边形GEHF是平行四边形.
此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.
18、(1);(2).
【解析】
先把二次根式化为最简二次根式,然后合并即可;
先把二次根式化为最简二次根式,然后把可能内合并后进行二次根式的除法运算.
【详解】
解:原式
;
原式
.
本题考查二次根式的混合运算,解题关键在于灵活运用二次根式的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、0.1
【解析】
用空心圈出现的频数除以圆圈的总数即可求解.
【详解】
解:由图可得,总共有20个圆,出现空心圆的频数是15,频率是15÷20=0.1.
故答案是:0.1.
考查了频率的计算公式:频率=频数÷数据总数,是需要识记的内容.
20、
【解析】
设一次函数的解析式是:y=kx+b,然后把点,代入得到一个关于k和b的方程组,从而求得k、b的值,进而求得函数解析式.
【详解】
解:设一次函数的解析式是:y=kx+b,
根据题意得:,
解得:,
则一次函数的解析式是:.
故答案是:.
本题考查了待定系数法求函数的解析式,先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.
21、 (2b+a)(2b-a)
【解析】
运用平方差公式进行因式分解:a2-b2=(a+b)(a-b).
【详解】
(2b+a)(2b-a).
故答案为:(2b+a)(2b-a)
本题考核知识点:因式分解.解题关键点:熟记平方差公式.
22、2
【解析】
试题解析:原式
故答案为
23、
【解析】
由O1和O2分别是两个正方形的对称中心,可求得BO1,BO2的长,易证得∠O1BO2是直角,继而求得答案.
【详解】
解:∵O1和O2分别是这两个正方形的中心,
∴BO1=×6=3,BO2=×8=4,∠O1BC=∠O2BC=45°,
∴∠O1BO2=∠O1BC+∠O2BC=90°,
∴阴影部分的面积=×4×3=12.
故答案是:12.
本题考查的是正方形的综合运用,熟练掌握对称中心是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)5;(2)正确,证明详见解析;(3)存在,有四种情况,面积分别是:,,,
【解析】
(1)根据勾股定理计算BC的长度,
(2)根据对角线互相垂直平分的四边形是菱形判断,
(3)有四种情况,作辅助线,将四边形分成两个三角形和一个四边形或两个三角形,相加可得结论.
【详解】
(1)∵BD⊥CD
∴∠BDC=90°,BC>CD
∵在“准等边四边形”ABCD中,BC≠AB,
∴AB=AD=CD=3,
∵BD=4,
∴BC=,
(2)正确.
如图所示:
∵AB=AD
∴ΔABD是等腰三角形.
∵AC⊥BD.
∴AC垂直平分BD.
∴BC=CD
∴CD =AB=AD=BC
∴四边形 ABCD是菱形.
(3)存在四种情况,
如图2,四边形ABPC是“准等边四边形”,过C作于F,则,
∵EP是AB的垂直平分线,
∴ ,
∴四边形AEFC是矩形,
在中, ,
∴ ,
∵
∴
∴
如图4,四边形ABPC是“准等边四边形”,
∵ ,
∴是等边三角形,
∴ ;
如图5,四边形ABPC是“准等边四边形”,
∵ ,PE是AB的垂直平分线,
∴ E是AB的中点,
∴ ,
∴
∴
如图6,四边形ABPC是“准等边四边形”,过P作于F,连接AP,
∵,
∴,
∴
本题考查了四边形综合题,矩形和菱形的判定和性质,“准等边四边形”的定义等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形和矩形解题,学会用分类讨论的思想解决问题,难度较大,属于中考压轴题.
25、(1)见解析;(2)∠EBC =21°,∠F=23°.
【解析】
试题分析:(1)、根据题意得出AE=BE,然后结合AD=BD得出答案;(2)、根据等腰三角形的性质得出∠ABC=∠ACB=67°,根据∠EBC=∠ABC﹣∠ABE和∠F=90°﹣∠ABC得出角度.
试题解析:(1)、证明:∵∠A=∠ABE, ∴EA=EB, ∵AD=DB,
∴DF是线段AB的垂直平分线;
(2)、解:∵∠A=46°, ∴∠ABE=∠A=46°, ∵AB=AC, ∴∠ABC=∠ACB=67°,
∴∠EBC=∠ABC﹣∠ABE=21°, ∠F=90°﹣∠ABC=23°.
26、(1)y=-100x+3850;(2)当乙为2辆时,能保障费用最少,最少费用为3650元.
【解析】
(1)y=租甲种车的费用+租乙种车的费用,由题意代入相关数据即可得;
(2)根据题意确定出x的取值范围,再根据一次函数的增减性即可得.
【详解】
(1)由题意,得
y=550(7-x)+450x,
化简,得y=-100x+3850,
即y(元)与x(辆)之间的函数表达式是y=-100x+3850;
(2)由题意,得45x+60(7﹣x)≥380,解得,x≤(x为自然数),
∵y=-100x+3850中k=-100
相关试卷
这是一份2024年贵州省黔西南州望谟六中学数学九上开学复习检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年贵州省黔西南州望谟六中学九上数学开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份贵州省黔西南州望谟六中学2023-2024学年数学九年级第一学期期末监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。