![贵州省都匀市第六中学2024-2025学年九上数学开学经典模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16269726/0-1729377971851/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![贵州省都匀市第六中学2024-2025学年九上数学开学经典模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16269726/0-1729377971917/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![贵州省都匀市第六中学2024-2025学年九上数学开学经典模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16269726/0-1729377971938/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
贵州省都匀市第六中学2024-2025学年九上数学开学经典模拟试题【含答案】
展开
这是一份贵州省都匀市第六中学2024-2025学年九上数学开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)为了调查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:)为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和众数分别是( )
A.11,11B.12,11C.13,11D.13,16
2、(4分)如图,的对角线相交于点,且,过点作交于点,若的周长为20,则的周长为( )
A.7B.8C.9D.10
3、(4分)如图,直线y=-x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD的垂直平分线交线段AB于点C.若△OBC和△OAD的周长相等,则OD的长是( )
A.2B.2C.D.4
4、(4分)如图,菱形ABCD的对角线AC、BD交于点O,E、F分别是AD、CD边的中点,连接EF,若,,则菱形ABCD的面积是
A.24B.20C.12D.6
5、(4分)若=x﹣5,则x的取值范围是( )
A.x<5B.x≤5C.x≥5D.x>5
6、(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )
A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OC
7、(4分)如图,点P是□ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( )
A.B.C.D.
8、(4分)在20km的环湖越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如右上图所示,根据图中提供的信息,下列说法中错误的有( )
①出发后1小时,两人行程均为10km; ②出发后1.5小时,甲的行程比乙多2km;
③两人相遇前,甲的速度小于乙的速度; ④甲比乙先到达终点.
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果一次函数y=kx+2的函数值y随着x的值增大而减小,那么k的取值范围是_____.
10、(4分)已知等腰三角形两条边的长为4和9,则它的周长______.
11、(4分)观察下列按顺序排列的等式:,试猜想第n个等式(n为正整数):an=_____.
12、(4分)如图,矩形全等于矩形,点在上.连接,点为的中点.若,,则的长为__________.
13、(4分)如图,矩形中,,连接,以对角线为边按逆时针方向作矩形,使矩形矩形;再连接,以对角线为边,按逆时针方向作矩形,使矩形矩形, ..按照此规律作下去,若矩形的面积记作,矩形的面积记作,矩形的面积记作, ... 则的值为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,的顶点在的网格中的格点上,
画出绕点A逆时针旋转得到的;
画出绕点A顺时针旋转得到的
15、(8分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.
(1)求证:△AFD≌△BFE;
(2)求证:四边形AEBD是菱形;
(3)若DC=,tan∠DCB=3,求菱形AEBD的面积.
16、(8分)要从甲、乙两名同学中选出一名,代表班级参加射击比赛. 现将甲、乙两名同学参加射击训练的成绩绘制成下列两个统计图:
根据以上信息,整理分析数据如下:
(1)分别求表格中、、的值.
(2)如果其他参赛选手的射击成绩都在7环左右,应该选______队员参赛更适合;如果其他参赛选手的射击成绩都在8环左右,应该选______队员参赛更适合.
17、(10分)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
18、(10分)在中,,,点是的中点,点是射线上一点,于点,且,连接,作于点,交直线于点.
(1)如图(1),当点在线段上时,判断和的数量关系,并加以证明;
(2)如图(2),当点在线段的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当和面积相等时,点与点之间的距离;如果不成立,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据:,计算其方差的结果为__________.
20、(4分)若有意义,则x 的取值范围是 .
21、(4分)当___________________时,关于的分式方程无解
22、(4分)图中的虚线网格是等边三角形,它的每一个小三角形都是边长为1的等边三角形.
(1)如图①,连接相邻两个小正三角形的顶点A,B,则AB的长为_______
(2)在如图②所示的网格中,用无刻度的直尺,画一个斜边长为的直角三角形,且它的顶点都在格点上.
23、(4分)如图,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,,,将△OAB绕O点顺时针旋转90°得到△OCD,直线AC、BD交于点E. 点M为直线BD上的动点,点N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边,则符合条件的点M的坐标为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某公司把一批货物运往外地,有两种运输方案可供选择.
方案一:使用快递公司的邮车运输,装卸收费400元,另外每千米再回收4元;
方案二:使用快递公司的火车运输,装卸收费820元,另外每千米再回收2元.
(1)分别求邮车、火车运输总费用y1(元)、y2(元)关于运输路程x(km)之间的函数关系式:
(2)如何选择运输方案,运输总费用比较节省?
25、(10分)计算:
(1);
(2)(﹣)(+)+(﹣1)2
26、(12分)如图,将一矩形纸片OABC放在平面直角坐标系中,,,.动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相同的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).
(1)OP =____________, OQ =____________;(用含t的代数式表示)
(2)当时,将△OPQ沿PQ翻折,点O恰好落在CB边上的点D处.
①求点D的坐标;
②如果直线y = kx + b与直线AD平行,那么当直线y = kx + b与四边形PABD有交点时,求b 的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
众数是出现次数最多的数,中位数是把数据从小到大排列位置处于中间的数;
【详解】
将数据从小到大排列为:8,9,10,11,12,14,16,16,17,19,
中位数为:13;
数据16出现的次数最多,故众数为16.
故选:D.
此题考查中位数,众数,解题关键在于掌握其定义.
2、D
【解析】
由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分、对边相等,即可得OB=OD,AB=CD,AD=BC,又由OE⊥BD,即可得OE是BD的垂直平分线,然后根据线段垂直平分线的性质,即可得BE=DE,由行四边形ABCD的周长为20可得BC+CD=10,然后可求△CDE的周长.
【详解】
∵四边形ABCD是平行四边形,
∴OB=OD,AB=CD,AD=BC,
∵OE⊥BD,
∴BE=DE,
∵平行四边形ABCD的周长为20,
∴BC+CD=10,
∴△CDE的周长为CD+DE+EC=CD+BC=10.
故选D.
此题考查了平行四边形的性质与线段垂直平分线的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.
3、B
【解析】
根据直线解析式可得OA和OB长度,利用勾股定理可得AB长度,再根据线段垂直平分线的性质以及两个三角形周长线段,可得OD=AB.
【详解】
当x=0时,y=2
∴点B(0,2)
当y=0时,-x+2=0
解之:x=2
∴点A(2,0)
∴OA=OB=2
∵点C在线段OD的垂直平分线上
∴OC=CD
∵△OBC和△OAD的周长相等,
∴OB+OC+BC=OA+OD+AD
∴OB+BC+CD=OA+OD+AD
OB+BD=OA+OD+AD即OB+AB+AD=OB+OD+AD
∴AB=OD
在Rt△AOB中
AB=OD=
故选B
本题主要考查了一次函数图象上点坐标特征、线段垂直平分线的性质、以及勾股定理.
4、A
【解析】
根据EF是的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的面积公式求解.
【详解】
解:、F分别是AD,CD边上的中点,即EF是的中位线,
,
则.
故选:A.
本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的AC的长是关键.
5、C
【解析】
因为=-a(a≤0),由此性质求得答案即可.
【详解】
∵=x-1,
∴1-x≤0
∴x≥1.
故选C.
此题考查二次根式的性质:=a(a≥0),=-a(a≤0).
6、C
【解析】
矩形的性质有①矩形的两组对边分别平行且相等;②矩形的四个角都是直角;③矩形的两条对角线互相平分且相等.
所以选项A,B,D正确,C错误.
故选C.
7、A
【解析】
点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选A.
8、B
【解析】
根据图像所给信息,结合函数图像的实际意义判断即可.
【详解】
解:由图像可得出发后1小时,两人行程均为10km,①正确;甲的速度始终为,乙在内,速度为,在内,速度为,所以出发后1.5小时,甲的行程为,而乙的行程为,,所以出发后1.5小时,甲的行程比乙多3km,②错误;相遇前,在内,乙的速度大于甲的速度,在内,乙的速度小于甲的速度,③ 错误;由图像知,甲2小时后到达终点,而乙到达终点花费的时间比甲的长,所以甲比乙先到达终点,④正确.错误的说法有2个.
故答案为:B
本题是根据函数图像获取信息,明确函数图像所表达的实际意义是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、k<1.
【解析】
根据一次函数的性质解答即可.
【详解】
∵一次函数y=kx+2,函数值y随x的值增大而减小,
∴k<1.
故答案为:k<1.
本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠1),当k>1时,y随x的增大而增大;当k
相关试卷
这是一份北京陈经纶中学2024-2025学年数学九上开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年临沧市重点中学九上数学开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年菏泽市九上数学开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。