终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    贵州省贵安新区民族中学2024年九上数学开学联考模拟试题【含答案】

    立即下载
    加入资料篮
    贵州省贵安新区民族中学2024年九上数学开学联考模拟试题【含答案】第1页
    贵州省贵安新区民族中学2024年九上数学开学联考模拟试题【含答案】第2页
    贵州省贵安新区民族中学2024年九上数学开学联考模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    贵州省贵安新区民族中学2024年九上数学开学联考模拟试题【含答案】

    展开

    这是一份贵州省贵安新区民族中学2024年九上数学开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,四边形和四边形都是正方形,反比例函数在第一象限的图象经过点,若两正方形的面积差为12,则的值为
    A.12B.6C.D.8
    2、(4分)函数中自变量的取值范围是( )
    A.B.C.且D.且
    3、(4分)某种材料的厚度是,0.0000034这个数用科学记数法表示为( )
    A.B.C.D.
    4、(4分)如图,,两地被池塘隔开,小明想测出、间的距离;先在外选一点,然后找出,的中点,,并测量的长为,由此他得到了、间的距离为( )
    A.B.C.D.
    5、(4分)下列各式成立的是
    A.B.C.D.
    6、(4分)在中,若,则的度数是( )
    A.B.110°C.D.
    7、(4分)如图,在中,和的平分线相交于点,过点作交于点,交于点,过点作于点,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )
    A.B.点到各边的距离相等
    C.D.设,,则
    8、(4分)三角形的三边a、b、c满足a(b﹣c)+2(b﹣c)=0,则这个三角形的形状是( )
    A.等腰三角形B.等边三角形
    C.直角三角形D.等腰直角三角形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)数据1,4,5,6,4,5,4的众数是___.
    10、(4分)若一次函数的图像与直线平行,且经过点,则这个一次函数的表达式为______.
    11、(4分)如图,在R△ABC中,∠C=90°,AC=3,BC=4,点P是AB上的一个动点,过点P作PM⊥AC于点M,PN⊥BC于点N,连接MN,则MN的最小值为_____.
    12、(4分)反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是________.
    13、(4分)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于的二元一次方程组的解是______ .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系式.根据题中所给信息解答以下问题:
    (1)甲、乙两地之间的距离为______km;图中点C的实际意义为:______;慢车的速度为______,快车的速度为______;
    (2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;
    (3)若在第一列快车与慢车相遇时,第二列车从乙地出发驶往甲地,速度与第一列快车相同,请直接写出第二列快车出发多长时间,与慢车相距200km.
    15、(8分)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.
    16、(8分)已知一次函数.
    (1)画出该函数的图象;
    (2)若该函数图象与轴,轴分別交于、两点,求、两点的坐标.
    17、(10分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.
    (1)求证:四边形PMEN是平行四边形;
    (2) 当AP为何值时,四边形PMEN是菱形?并给出证明。
    18、(10分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:
    假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3 ∶3 ∶4 ,通过计算说明谁应当选为优秀学生干部。
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)计算的结果等于______.
    20、(4分)若有增根,则m=______
    21、(4分)若,则=______.
    22、(4分)若代数式在实数范围内有意义,则x的取值范围是_____.
    23、(4分)如果在平行四边形ABCD中,两个邻角的大小是5:4,那么其中较小的角等于_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,高速公路的同一侧有A、B两城镇,它们到高速公路所在直线MN的距离分别为AA′=2 km,BB′=4 km,且A′B′=8 km.
    (1)要在高速公路上A′、B′之间建一个出口P,使A、B两城镇到P的距离之和最小.请在图中画出P的位置,并作简单说明.
    (2)求这个最短距离.
    25、(10分)在平行四边形ABCD中,对角线AC、BD交于点O,点E、F在AC上,且AE=CF,求证:DE=BF.
    26、(12分)如图①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.
    (1)请你判断并写出FE与FD之间的数量关系(不需证明);
    (2)如图②,如果∠ACB不是直角,其他条件不变,那么在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    设正方形OABC、BDEF的边长分别为a和b,则可表示出D(a,a-b),F(a+b,a),根据反比例函数图象上点的坐标特征得到E(a+b,),由于点E与点D的纵坐标相同,所以=a-b,则a2-b2=k,然后利用正方形的面积公式易得k=1.
    【详解】
    解:设正方形OABC、BDEF的边长分别为a和b,则D(a,a-b),F(a+b,a),
    所以E(a+b,),
    所以=a-b,
    ∴(a+b)(a-b)=k,
    ∴a2-b2=k,
    ∵两正方形的面积差为1,
    ∴k=1.
    故选:A.
    本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了正方形的性质.
    2、B
    【解析】
    根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.
    【详解】
    根据题意得:
    解得:x≤2
    故选B
    本题考查求函数的自变量的取值范围函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数
    (2)当函数表达式是分式时,考虑分式的分母不能为0
    (3)当函数表达式是二次根式时,被开方数非负.
    3、B
    【解析】
    绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:0.0000034=3.4×10−1.
    故选:B.
    此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    4、B
    【解析】
    根据三角形中位线定理解答.
    【详解】
    ∵点M,N分别是AC,BC的中点,
    ∴AB=2MN=38(m),
    故选B.
    本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.
    5、D
    【解析】
    分析:根据二次根式的性质逐项化简即可.
    详解:A. ∵ ,故不正确;
    B. ∵ ,故不正确;
    C. ∵当x25.8 >25.4
    ∴班长的最终成绩最高,
    ∴班长当选.
    故答案为:平均数分别为26.2 ,25.8 ,25.4 ,班长应当选.
    本题考查加权平均数的计算,比较简单,熟记加权平均数的计算方法是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3
    【解析】
    根据平方差公式()即可运算.
    【详解】
    解:原式=.
    本题考查了平方差公式,熟记平方差公式是解决此题的关键.
    20、-1
    【解析】
    增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.
    【详解】
    方程两边都乘(x-3),得
    x-1(x-3)=1-m,
    ∵方程有增根,
    ∴最简公分母x-3=0,即增根是x=3,
    把x=3代入整式方程,得m=-1.
    故答案是:-1.
    解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
    21、1
    【解析】
    根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案
    【详解】




    故答案为1.
    本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键.
    22、x≤
    【解析】
    ∵代数式在实数范围内有意义,
    ∴,解得:.
    故答案为:.
    23、80°
    【解析】
    根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=4:5,求出∠B即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠B+∠C=180°,
    ∵∠B:∠C=4:5,
    ∴∠B=×180°=80°,
    故答案为:80°.
    本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、这个最短距离为10km.
    【解析】
    分析:(1)作点A关于MN的对称点C,连接BC交MN于点P,连接PA,此时PA+PB的值最小.
    (2)作CD⊥BB1的延长线于D,在Rt△BCD中,利用勾股定理求出BC即可;
    详解:(1)作点A关于MN的对称点C,连接BC交MN于点P,连接PA,此时PA+PB的值最小.
    (2)作CD⊥BB1的延长线于D,
    在Rt△BCD中,BC= =10,
    ∴PA+PB的最小值=PB+PC=BC=10(km).
    点睛:本题考查作图-应用与设计,轴对称-最短问题、勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,学会添加常用辅助线,构造直角三角形解决问题.
    25、证明见解析.
    【解析】
    首先连接BE,DF,由四边形ABCD是平行四边形,AE=CF,易得OB=OD,OE=OF,即可判定四边形BEDF是平行四边形,继而证得DE=BF.
    【详解】
    连接BE,DF,
    ∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,
    ∵AE=CF,
    ∴OA﹣AE=OC﹣CF,
    ∴OE=OF,
    ∴四边形BEDF是平行四边形,
    ∴DE=BF.
    考点:1.平行四边形的性质;2.全等三角形的判定与性质.
    26、(1)FE=FD (2)答案见解析
    【解析】
    (1)先在AC上截取AG=AE,连结FG,利用SAS判定△AEF≌△AGF,得出∠AFE=∠AFG,FE=FG,再利用ASA判定△CFG≌△CFD,得到FG=FD,进而得出FE=FD;
    (2)先过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,根据已知条件得到∠GEF=∠HDF,进而判定△EGF≌△DHF(AAS),即可得出FE=FD.也可以过点F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,再判定△EFG≌△DFH(ASA),进而得出FE=FD.
    【详解】
    (1)FE与FD之间的数量关系为:FE=FD.
    理由:如图,在AC上截取AG=AE,连结FG,
    ∵AD是∠BAC的平分线,
    ∴∠1=∠2,
    在△AEF与△AGF中

    ∴△AEF≌△AGF(SAS),
    ∴∠AFE=∠AFG,FE=FG,
    ∵∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,
    ∴2∠2+2∠3+∠B=180°,
    ∴∠2+∠3=60°,
    又∵∠AFE为△AFC的外角,
    ∴∠AFE=∠CFD=∠AFG=∠2+∠3=60°,
    ∴∠CFG=180°-60°-60°=60°,
    ∴∠GFC=∠DFC,
    在△CFG与△CFD中,

    ∴△CFG≌△CFD(ASA),
    ∴FG=FD,
    ∴FE=FD;
    (2)结论FE=FD仍然成立.
    如图,过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,

    ∵∠B=60°,且AD,CE分别是∠BAC,∠BCA的平分线,
    ∴∠2+∠3=60°,F是△ABC的内心,
    ∴∠GEF=∠BAC+∠3=∠1+∠2+∠3=60°+∠1,
    ∵F是△ABC的内心,即F在∠ABC的角平分线上,
    ∴FG=FH,
    又∵∠HDF=∠B+∠1=60°+∠1,
    ∴∠GEF=∠HDF,
    在△EGF与△DHF中,

    ∴△EGF≌△DHF(AAS),
    ∴FE=FD.
    本题属于三角形综合题,主要考查了全等三角形的判定与性质,三角形外角性质,角平分线的性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年贵州省贵阳市贵安新区民族中学九上数学开学联考试题【含答案】:

    这是一份2024年贵州省贵阳市贵安新区民族中学九上数学开学联考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    贵州省贵阳市贵安新区民族中学2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案:

    这是一份贵州省贵阳市贵安新区民族中学2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了校园内有一个由两个全等的六边形等内容,欢迎下载使用。

    贵州省贵安新区民族中学2023-2024学年九上数学期末质量检测试题含答案:

    这是一份贵州省贵安新区民族中学2023-2024学年九上数学期末质量检测试题含答案,共8页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map