搜索
    上传资料 赚现金
    英语朗读宝

    贵州省黔东南、黔南、黔西南2024年数学九年级第一学期开学调研模拟试题【含答案】

    贵州省黔东南、黔南、黔西南2024年数学九年级第一学期开学调研模拟试题【含答案】第1页
    贵州省黔东南、黔南、黔西南2024年数学九年级第一学期开学调研模拟试题【含答案】第2页
    贵州省黔东南、黔南、黔西南2024年数学九年级第一学期开学调研模拟试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    贵州省黔东南、黔南、黔西南2024年数学九年级第一学期开学调研模拟试题【含答案】

    展开

    这是一份贵州省黔东南、黔南、黔西南2024年数学九年级第一学期开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如果等腰三角形两边长是6和3,那么它的周长是( )
    A.15或12B.9C.12D.15
    2、(4分)若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
    A.m>﹣2B.m<﹣2
    C.m>2D.m<2
    3、(4分)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )
    A.①,②B.①,④C.③,④D.②,③
    4、(4分)如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=( )
    A.35°B.45°C.50°D.55°
    5、(4分)在平面直角坐标系中,点(-1,2)在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    6、(4分)如图,一块等腰直角的三角板,在水平桌面上绕点按顺时针方向旋转到的位置,使三点共线,那么旋转角度的大小为( )
    A.B.C.D.
    7、(4分)下列运算正确的是( )
    A.B.=4C.=3D.
    8、(4分)弹簧挂上物体后伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:下列说法错误的是( )
    A.在没挂物体时,弹簧的长度为10cm
    B.弹簧的长度随物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量
    C.如果物体的质量为mkg,那么弹簧的长度ycm可以表示为y=2.5m+10
    D.在弹簧能承受的范围内,当物体的质量为4kg时,弹簧的长度为20cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)设,若,则____________.
    10、(4分)如图,已知矩形ABCD中,,,E,F,G,H分别是AB,BC,CD,DA的中点,则四边形EFGH的周长等于_____cm。
    11、(4分)如图,在△ABE中,∠E=30°,AE的垂直平分线MN交BE于点C,且AB=AC,则∠B=________.
    12、(4分)已知、为有理数,、分别表示的整数部分和小数部分,且,则 .
    13、(4分)如图,有一个由传感器A控制的灯,要装在门上方离地面4.5m的墙上,任何东西只要移至该灯5m及5m内,灯就会自动发光,小明身高1.5m,他走到离墙_______的地方灯刚好发光.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在正方形方格纸中,线段AB的两个端点和点P都在小方格的格点上,分别按下列要求画格点四边形.
    (1)在图甲中画一个以AB为边的平行四边形,使点P落在AB的对边上(不包括端点).
    (2)在图乙中画一个以AB为对角线的菱形,使点P落在菱形的内部(不包括边界).
    15、(8分)商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价1元,日销售量就减少10件.据此规律,请回答:
    (1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是多少?
    (2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?
    16、(8分)如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为_____.
    17、(10分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:
    甲:79,86,82,85,83.
    乙:88,81,85,81,80.
    请回答下列问题:
    (1)甲成绩的中位数是______,乙成绩的众数是______;
    (2)经计算知,.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.
    18、(10分)如图,在△ABC中,AB=6,AC=8,D是AB的中点.若在AC上存在一点E,使得△ADE与原三角形相似.
    (1)确定E的位置,并画出简图:
    (2)求AE的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)古算题:“笨人执竿要进屋,无奈门框拦住竿,横多四尺竖多二,没法急得放声哭,有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足,借问竿长多少数,谁人算出我佩服,”若设竿长为 x 尺,则可列方程为_____(方程无需化简).
    20、(4分)如图,A、B两点分别位于一个池塘的两端,小聪想用绳子测量A、B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A、B的点C,找到AC、BC的中点D、E,并且测出DE的长为13m,则A、B间的距离为______m.
    21、(4分)如图,直线与轴正半轴交于点,与轴交于点,将沿翻折,使点落在点处,点是线段的中点,射线交线段于点,若为直角三角形,则的值为__________.
    22、(4分)统计学校排球队队员的年龄,发现有岁、岁、岁、岁等四种年龄,统计结果如下表,则根据表中信息可以判断表中信息可以判断该排球队队员的平均年龄是__________岁.
    23、(4分)如图,在正方形中,点,点,,,则点的坐标为_________.(用、表示)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:
    甲:79,86,82,85,83.
    乙:88,81,85,81,80.
    请回答下列问题:
    (1)甲成绩的中位数是______,乙成绩的众数是______;
    (2)经计算知,.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.
    25、(10分)因式分解:
    (1)a(x﹣y)﹣b(y﹣x)2
    (2)2x3﹣8x2+8x.
    26、(12分)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(-1,2)、B两点,求m、n的值并直接写出点B的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由已知可得第三边是6,故可求周长.
    【详解】
    另外一边可能是3或6,根据三角形三边关系,第三边是6,
    所以,三角形的周长是:6+6+3=15.
    故选D
    本题考核知识点:等腰三角形.解题关键点:分析等腰三角形三边的关系.
    2、B
    【解析】
    根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.
    【详解】
    ∵函数的图象在其象限内y的值随x值的增大而增大,
    ∴m+1<0,
    解得m<-1.
    故选B.
    3、D
    【解析】
    确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.
    【详解】
    只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,
    ∴带②③两块碎玻璃,就可以确定平行四边形的大小.
    故选D.
    本题考查平行四边形的定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.
    4、D
    【解析】
    延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而不难求得∠FPC的度数.
    【详解】
    解:延长PF交AB的延长线于点G.
    在△BGF与△CPF中,

    ∴△BGF≌△CPF(ASA),
    ∴GF=PF,
    ∴F为PG中点.
    又∵由题可知,∠BEP=90°,
    ∴(直角三角形斜边上的中线等于斜边的一半),
    ∵(中点定义),
    ∴EF=PF,
    ∴∠FEP=∠EPF,
    ∵∠BEP=∠EPC=90°,
    ∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,
    ∵四边形ABCD为菱形,
    ∴AB=BC,∠ABC=180°﹣∠A=70°,
    ∵E,F分别为AB,BC的中点,
    ∴BE=BF,
    易证FE=FG,
    ∴∠FGE=∠FEG=55°,
    ∵AG∥CD,
    ∴∠FPC=∠EGF=55°
    故选:D.
    此题主要考查了菱形的性质的理解及运用,灵活应用菱形的性质是解决问题的关键.
    5、B
    【解析】
    根据各象限内点的坐标特征解答即可.
    【详解】
    ∵点(-1,2)的横坐标为负数,纵坐标为正数,
    ∴点(-1,2)在第二象限.
    故选B.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    6、D
    【解析】
    根据三点共线可得,再根据等腰直角三角板的性质得,即可求出旋转角度的大小.
    【详解】
    ∵三点共线

    ∵这是一块等腰直角的三角板


    故旋转角度的大小为135°
    故答案为:D.
    本题考查了三角板的旋转问题,掌握等腰直角三角板的性质、旋转的性质是解题的关键.
    7、D
    【解析】
    根据二次根式的加法、减法、乘法、除法法则分别进行计算即可.
    【详解】
    A. 与不是同类二次根式,不能进行合并,故A选项错误;
    B. ,故B选项错误;
    C. ,故C选项错误;
    D. ,正确,
    故选D.
    本题考查了二次根式的运算,熟练掌握二次根式加法、减法、乘法、除法的运算法则是解题的关键.
    8、B
    【解析】
    因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y弹簧长度;弹簧的长度有一定范围,不能超过.
    【详解】
    解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;
    B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;
    C、当物体的质量为mkg时,弹簧的长度是y=12+2.5m,故此选项正确,不符合题意;
    D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;
    故选B.
    点评:此题考查了函数关系式,主要考查了函数的定义和结合几何图形列函数关系式.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据已知条件求出,,得到m-n与m+n,即可求出答案.
    【详解】
    ∵,
    ∴,
    ∴,
    ∵m> n>0,
    ∴,,
    ∴,
    故答案为:.
    此题考查利用算术平方根的性质化简,平反差公式的运用,熟记公式是解题的关键.
    10、20
    【解析】
    连接AC、BD,根据三角形的中位线求出HG,GF,EF,EH的长,再求出四边形EFGH的周长即可.
    【详解】
    如图,连接AC、BD,
    四边形ABCD是矩形,
    AC=BD=8cm,
    E、F、G、H分别是AB、BC、CD、DA的中点,
    HG=EF=AC=4cm,EH=FG=BD=4cm,
    四边形EFGH的周长等于
    4+4+4+4=16cm.
    本题考查了矩形的性质,三角形的中位线的应用,能求出四边形的各个边的长是解此题的关键,注意:矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半.
    11、60°
    【解析】
    分析:根据线段的垂直平分线的性质得到CA=CE,根据等腰三角形的性质得到∠CAE=∠E,根据三角形的外角的性质得到∠ACB=2∠E,根据等腰三角形的性质得到∠B即可.
    详解:∵MN是AE的垂直平分线,
    ∴CA=CE,
    ∴∠CAE=∠E,
    ∴∠ACB=2∠E,
    ∵AB=AC,
    ∴∠B=∠ACB=2∠E=60°,
    故答案为:60°
    点睛:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
    12、1.
    【解析】
    试题分析:∵2<<3,∴5>>1,∴m=1,n=,∵,∴,化简得:,等式两边相对照,因为结果不含,∴且,解得a=3,b=﹣2,∴2a+b=2×3﹣2=6﹣2=1.故答案为1.
    考点:估算无理数的大小.
    13、4米
    【解析】
    过点C作CE⊥AB于点E,则人离墙的距离为CE, 在Rt△ACE中,根据勾股定理列式计算即可得到答案.
    【详解】
    如图,传感器A距地面的高度为AB=4.5米,人高CD=1.5米,
    过点C作CE⊥AB于点E,则人离墙的距离为CE,
    由题意可知AE=AB-BE=4.5-1.5=3(米).
    当人离传感器A的距离AC=5米时,灯发光.
    此时,在Rt△ACE中,根据勾股定理可得,
    CE2=AC2-AE2=52-32=42,
    ∴CE=4米.
    即人走到离墙4米远时,灯刚好发光.
    本题考查了勾股定理的应用,解题的关键是熟练的掌握勾股定理的定义与运算.
    三、解答题(本大题共5个小题,共48分)
    14、(1)答案见解析 (2)答案见解析
    【解析】
    (1)根据一组对边平行且相等是平行四边形,过P作AB的平行线,使其作为平行四边形的一边,并且使这条边等于AB,端点在格点上即可.方案不唯一.
    (2)根据四条边相等的四边形是菱形,由三角形全等的性质构造菱形的四条边,且使P点在菱形的内部即可.方案不唯一.
    【详解】
    (1)解:如下图
    (2)解:如下图
    本题考查了平行四边形和菱形的判定,灵活应用两者的性质画符合题意的平行四边形及菱形是解题的关键.
    15、(1)每天可销售450件商品,商场获得的日盈利是6750元;(2)每件商品售价为60或1元时,商场日盈利达到100元.
    【解析】
    (1)首先求出每天可销售商品数量,然后可求出日盈利;
    (2)设商场日盈利达到100元时,每件商品售价为x元,根据每件商品的盈利×销售的件数=商场的日盈利,列方程求解即可.
    【详解】
    (1)当每件商品售价为55元时,比每件商品售价50元高出5元,
    即55﹣50=5(元),
    则每天可销售商品450件,即500﹣5×10=450(件),
    商场可获日盈利为(55﹣40)×450=6750(元).
    答:每天可销售450件商品,商场获得的日盈利是6750元;
    (2)设商场日盈利达到100元时,每件商品售价为x元.
    则每件商品比50元高出(x﹣50)元,每件可盈利(x﹣40)元,
    每日销售商品为500﹣10×(x﹣50)=1000﹣10x(件).
    依题意得方程(1000﹣10x)(x﹣40)=100,
    整理,得x2﹣140x+410=0,
    解得x=60或1.
    答:每件商品售价为60或1元时,商场日盈利达到100元.
    16、(8076,0)
    【解析】
    先利用勾股定理求得AB的长,再找到图形变换规律为:△OAB每连续3次后与原来的状态一样,然后求得△2020的横坐标,进而得到答案.
    【详解】
    ∵A(-3,0),B(0,4),
    ∴OA=3,OB=4,
    ∴AB==5,
    ∴△ABC的周长=3+4+5=12,
    图形变换规律为:△OAB每连续3次后与原来的状态一样,
    ∵2020÷3=673…1,
    ∴△2020的直角顶点是第673个循环组后第一个三角形的直角顶点,
    ∴△2020的直角顶点的横坐标=673×12=8076,
    ∴△2020的直角顶点坐标为(8076,0)
    故答案为:(8076,0).
    本题主要考查图形的变换规律,勾股定理,解此题的关键在于准确理解题意找到题中图形的变化规律.
    17、(1)83,81;(2),推荐甲去参加比赛.
    【解析】
    (1)根据中位数和众数分别求解可得;
    (2)先计算出甲的平均数和方差,再根据方差的意义判别即可得.
    【详解】
    (1)甲成绩的中位数是83分,乙成绩的众数是81分,
    故答案为:83分、81分;
    (2),
    ∴.
    ∵,,
    ∴推荐甲去参加比赛.
    此题主要考查了方差、平均数、众数、中位数等统计量,其中方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    18、(1)画出简图见解析;(2)AE的长为4或.
    【解析】
    (1)分别从△ADE∽△ABC与△ADE∽△ACB去求解,即可画出图形;
    (2)分别从当时,△ADE∽△ABC与当时,△ADE∽△ACB去分析求解即可求得答案.
    【详解】
    画出简图如图所示:
    当DE1∥BC时,△ADE∽△ABC
    当∠ADE2=∠C时,△ADE∽△ACB
    (2)∵D是AB的中点,AB=6,
    ∴AD=3,
    ∵∠A是公共角,
    ∴当时,△ADE∽△ABC,
    ∴,
    解得:AE1=4;
    ∴当时,△ADE∽△ACB,
    ∴,
    解得AE2=,
    ∴AE的长为4或.
    本题考查了相似三角形的判定与性质,正确地进行分类讨论,熟练运用相似三角形的相关知识是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(x−1)1+(x−4)1=x1
    【解析】
    设竿长为x尺,根据题意可得,屋门的宽为x−4,高为x−1,对角线长为x,然后根据勾股定理列出方程.
    【详解】
    解:设竿长为x尺,
    由题意得:(x−1)1+(x−4)1=x1.
    故答案为:(x−1)1+(x−4)1=x1.
    本题考查了利用勾股定理解决实际问题,解答本题的关键是根据题意表示出屋门的宽,高.
    20、1
    【解析】
    D、E是AC和BC的中点,则DE是△ABC的中位线,则依据三角形的中位线定理即可求解.
    【详解】
    解:∵D,E分别是AC,BC的中点,
    ∴AB=2DE=1m.
    故答案为:1.
    本题考查了三角形的中位线定理,正确理解定理是解题的关键.
    21、-1
    【解析】
    根据一次函数解析式可得B点坐标为(0,),所以得出OB=,再由为直角三角形得出∠ADE为直角,结合是直角三角形斜边的中点进一步得出∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,所以△AOB为等腰直角三角形,所以OA长度为,进而得出A点坐标,将其代入解析式即可得出k的值.
    【详解】
    由题意得:B点坐标为(0,),∴OB=,
    ∵在直角三角形AOB中,点是线段的中点,
    ∴OD=BD=AD,
    又∵为直角三角形,
    ∴∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,
    ∴△AOB为等腰直角三角形,
    ∴OA=OB=,
    ∴A点坐标为(,0),
    ∴,
    解得k=-1.
    故答案为:-1.
    本题主要考查了一次函数与三角形性质的综合运用,熟练掌握相关概念是解题关键.
    22、
    【解析】
    计算出学校排球队队员的总年龄再除以总人数即可.
    【详解】
    解:(岁)
    所以该排球队队员的平均年龄是14岁.
    故答案为:14
    本题考查了平均数,掌握求平均数的方法是解题的关键.
    23、(b,a+b).
    【解析】
    先根据A,B坐标,进而求出OA=a,OB=b,再判断出△BCE≌△BAO,即可求出点C坐标.
    【详解】
    ∵A(a,0),B(0,b),
    ∴OA=a,OB=b,
    过点C作CE⊥OB于E,如图,
    ∴∠BEC=∠BOA=90°,
    ∵四边形ABCD是正方形,
    ∴AB=BC,∠ABC=90°,
    ∴∠CBE+∠ABO=90°,
    ∵∠BCE+∠CBE=90°
    ∴∠BCE=∠ABO
    在△ABO和△BCE中,

    ∴△ABO≌△BCE,
    ∴CE=OB=b,BE=OA=a,
    ∴OE=OB+BE=a+b,
    ∴C(b,a+b).
    本题主要考查了图形与坐标,解题的关键是掌握正方形的性质以及全等三角形的判定和性质.
    二、解答题(本大题共3个小题,共30分)
    24、(1)83,81;(2),推荐甲去参加比赛.
    【解析】
    (1)根据中位数和众数分别求解可得;
    (2)先计算出甲的平均数和方差,再根据方差的意义判别即可得.
    【详解】
    (1)甲成绩的中位数是83分,乙成绩的众数是81分,
    故答案为:83分、81分;
    (2),
    ∴.
    ∵,,
    ∴推荐甲去参加比赛.
    此题主要考查了方差、平均数、众数、中位数等统计量,其中方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    25、(1)(x﹣y)[a﹣b(x﹣y)];(1)1x(x﹣1)1.
    【解析】
    (1)提取公因式x-y,在医院公因式法进行计算即可
    (1)先提取公因式1x,再对余下的多项式利用完全平方公式继续分解
    【详解】
    (1)原式=a(x-y)-b(y-x) =(x﹣y)[a﹣b(x﹣y)];
    (1)原式=1x(x -4x+4)=1x(x﹣1)1.
    此题考查提取公因式法与公式法的综合运用,解题关键在于提取公因式
    26、m=-2,n=-2,B(1,-2).
    【解析】
    利用待定系数法即可解决问题,根据对称性或利用方程组确定点B坐标.
    【详解】
    解:∵直线y=mx与双曲线相交于A(-1,2),
    ∴m=-2,n=-2,
    ∵A,B关于原点对称,
    ∴B(1,-2).
    本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,属于中考常考题型.
    题号





    总分
    得分
    批阅人
    物体的质量(kg)
    0
    1
    2
    3
    4
    5
    弹簧的长度(cm)
    10
    12.5
    15
    17.5
    20
    22.5
    年龄/岁
    人数/个

    相关试卷

    贵州省(黔东南,黔南,黔西南)2024-2025学年数学九上开学综合测试模拟试题【含答案】:

    这是一份贵州省(黔东南,黔南,黔西南)2024-2025学年数学九上开学综合测试模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    贵州省黔东南、黔南、黔西南2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案:

    这是一份贵州省黔东南、黔南、黔西南2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了下列事件中,必然发生的为,定义等内容,欢迎下载使用。

    2023-2024学年贵州省(黔东南,黔南,黔西南)数学九年级第一学期期末预测试题含答案:

    这是一份2023-2024学年贵州省(黔东南,黔南,黔西南)数学九年级第一学期期末预测试题含答案,共9页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map