终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    贵州省兴仁县2024-2025学年九上数学开学学业水平测试试题【含答案】

    立即下载
    加入资料篮
    贵州省兴仁县2024-2025学年九上数学开学学业水平测试试题【含答案】第1页
    贵州省兴仁县2024-2025学年九上数学开学学业水平测试试题【含答案】第2页
    贵州省兴仁县2024-2025学年九上数学开学学业水平测试试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    贵州省兴仁县2024-2025学年九上数学开学学业水平测试试题【含答案】

    展开

    这是一份贵州省兴仁县2024-2025学年九上数学开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)平行四边形中,,则的度数是( )
    A.B.C.D.
    2、(4分)某班数学兴趣小组位同学的一次数学测验成绩为,,,,(单位:分),经过计算这组数据的方差为,小李和小明同学成绩均为分,若该组加入这两位同学的成绩则( )
    A.平均数变小B.方差变大C.方差变小D.方差不变
    3、(4分)计算的结果为( )
    A.B.C.3D.5
    4、(4分)一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,然后再按演讲内容占50%、演讲能力占40% 、演讲效果占10%的比例计算选手的综合成绩.某选手的演讲内容、演讲能力、演讲效果成绩依次为85,95,95,则该选手的综合成绩为 ( )
    A.92B.88C.90D.95
    5、(4分)发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,1.其中能作为直角三角形的三边长的有
    A.1组B.2组C.3组D.4组
    6、(4分)若x<2,化简+|3-x|的正确结果是( )
    A.-1B.1C.2x-5D.5-2x
    7、(4分)如图,正方形中,,点在边上,且,将沿对折至,延长交边于点,连接、.则下列结论:①≌;②;③∥;④.其中正确的是( )
    A.①②B.①②③C.①②④D.①②③④
    8、(4分)点关于原点对称的点的坐标为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一次函数y=kx+b的图像过点(-1,0)和点(0,2),则该一次函数的解析式是______。
    10、(4分)当时,二次根式的值是______.
    11、(4分)直线与直线平行,且经过,则直线的解析式为:__________.
    12、(4分)如图,△ABO的面积为3,且AO=AB,反比例函数y= 的图象经过点A,则k的值为___.
    13、(4分)大型古装历史剧《那年花开月正圆》火了“晋商”一词,带动了晋商文化旅游的发展.图是清代某晋商大院艺术窗的一部分,图中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S的边长为________cm.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某校对各个班级教室卫生情况的考评包括以下几项:门窗,桌椅,地面,一天,两个班级的各项卫生成绩分别如表:(单位:分)
    (1)两个班的平均得分分别是多少;
    (2)按学校的考评要求,将黑板、门窗、桌椅、地面这三项得分依次按25%、35%、40%的比例计算各班的卫生成绩,那么哪个班的卫生成绩高?请说明理由.
    15、(8分)甲乙两人同时登山,甲乙两人距地面的高度(米与登山时间(分之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
    (1)甲登山的速度是 米分钟,乙在地提速时距地面的高度为 米;
    (2)直接写出甲距地面高度(米和(分之间的函数关系式;
    (3)若乙提速后,乙的速度是甲登山速度的3倍.请问登山多长时间时,乙追上了甲,此时乙距地的高度为多少米?
    16、(8分)七巧板是我国祖先的一项卓越创造.下列两幅图中有一幅是小明用如图所示的七巧板拼成的,另一幅则不是.请选出不是小明拼成的那幅图,并说明选择的理由.

    17、(10分)某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?
    18、(10分)如图中的虚线网格我们称为正三角形网格,它的每一个小三角形都是边长为 1个单位长度的正三角形,这样的三角形称为单位正三角形.
    (1)图①中,已知四边形 ABCD 是平行四边形,求△ABC 的面积和对角线 AC 的长;
    (2)图②中,求四边形 EFGH 的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在□ABCD中,对角线AC、BD相交于O,AC+BD=10,BC=3,则△AOD的周长为 .
    20、(4分)如图,平行四边形ABCD的周长为20,对角线AC、BD交于点O,E为CD的中点,BD=6,则△DOE的周长为 _________ .
    21、(4分)一根竹子高10尺,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是______尺.
    22、(4分)化简b  0  _______.
    23、(4分)如图,点P为函数y=(x>0)图象上一点过点P作x轴、y轴的平行线,分别与函数y(x>0)的图象交于点A,B,则△AOB的面积为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于H,求DH的长.

    25、(10分)如图,矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是,矩形OABC沿直线BD折叠,使得点C落在对角线OB上的点E处,折痕与OC交于点D.
    (1)求直线OB的解析式及线段OE的长;
    (2)求直线BD的解析式及点E的坐标;
    (3)若点P是平面内任意一点,点M是直线BD上的一个动点,过点M作轴,垂足为点N,在点M的运动过程中是否存在以P、N、E、O为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.
    26、(12分)已知:如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据平行四边形的对角相等、相邻内角互补求解.
    【详解】
    ∵平行四形ABCD
    ∴∠B=∠D=180°−∠A
    ∴∠B=∠D=80°
    ∴∠B+∠D=160°
    故选:D.
    本题考查的是利用平行四边形的性质,必须熟练掌握.
    2、C
    【解析】
    分别计算出原数据和新数据的方差即可得.
    【详解】
    解:原数据的平均数为:,
    方差为:;
    新数据的平均数为:,
    所以方差为:

    ∴方差变小.
    故选择:C.
    本题主要考查方差,解题的关键是掌握方差的定义和计算公式
    3、C
    【解析】
    针对二次根式化简,零指数幂2个考点分别进行计算,然后根据实数的运算法则求得计算结果:
    .故选C.
    4、C
    【解析】
    分析:根据加权平均数公式计算即可,若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则叫做这n个数的加权平均数,此题w1+w2+w3+…+wn=50%+40% +10%=1.
    详解:由题意得,
    85×50%+95×40%+95×10%=90(分).
    点睛:本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解答本题的关键.
    5、C
    【解析】
    ①∵82+152=172,∴能组成直角三角形;
    ②∵52+122=132,∴能组成直角三角形;
    ③122+152≠202,∴不能组成直角三角形;
    ④72+242=12,∴能组成直角三角形.
    故选C.
    6、C
    【解析】
    分析:本题利用绝对值的化简和二次根式 的化简得出即可.
    解析:∵x<2,∴+|3﹣x|= .
    故选D.
    7、B
    【解析】
    分析:根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可.
    详解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;
    ②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6-x.在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=1.所以BG=1=6-1=GC;
    ③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,
    ∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;
    ④错误.过F作FH⊥DC,
    ∵BC⊥DH,
    ∴FH∥GC,
    ∴△EFH∽△EGC,
    ∴,
    EF=DE=2,GF=1,
    ∴EG=5,
    ∴△EFH∽△EGC,
    ∴相似比为:,
    ∴S△FGC=S△GCE-S△FEC=×1×4-×4×(×1)=.
    而S△AFE=S△ADE=,
    ∴S△FGC≠S△AFE
    故答案为①②③.
    点睛:本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.
    8、A
    【解析】
    根据平面直角坐标系中,关于原点对称的点的坐标特征,即可得到答案.
    【详解】
    点关于原点对称的点的坐标为(-4,3),
    故选A.
    本题主要考查平面直角坐标系中,关于原点对称的点的坐标特征,熟练掌握“关于原点对称的两点的横纵坐标分别互为相反数”,是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、y=2x+2
    【解析】
    根据一次函数解析式y=kx+b,再将点(-1,0)和点(0,2)代入可得方程组,解出即可得到k和b的值,即得到解析式.
    【详解】
    因为点(-1,0)和点(0,2)经过一次函数解析式y=kx+b,所以0=-x+b,2=b,得到k=2,b=2,所以一次函数解析式是:y=2x+2,故本题答案是:y=2x+2.
    本题考查用待定系数法求一次函数解析式,难度不大,关键是掌握待定系数发的运用.
    10、2
    【解析】
    把x=3代入二次根式,可得.
    【详解】
    把x=3代入二次根式,可得.
    故答案为:2
    本题考核知识点:二次根式化简. 解题关键点:熟练进行化简.
    11、
    【解析】
    由直线与直线平行,可知k=1,然后把代入中即可求解.
    【详解】
    ∵直线与直线平行,
    ∴k=1,
    把代入,得
    1+b=4,
    ∴b=1,
    ∴.
    故答案为:.
    本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了一次函数图像上点的坐标满足一次函数解析式.
    12、1
    【解析】
    过点A作OB的垂线,垂足为点C,根据等腰三角形的性质得OC=BC,再根据三角形的面积公式得到 OB•AC=1,易得OC•AC=1,设A点坐标为(x,y),即可得到k=xy=OC•AC=1.
    【详解】
    过点A作OB的垂线,垂足为点C,如图,
    ∵AO=AB,
    ∴OC=BC=OB,
    ∵△ABO的面积为1,
    ∴OB⋅AC=1,
    ∴OC⋅AC=1.
    设A点坐标为(x,y),而点A在反比例函数y= (k>0)的图象上,
    ∴k=xy=OC⋅AC=1.
    故答案为:1.
    此题考查反比例函数系数k的几何意义,解题关键在于作辅助线.
    13、7
    【解析】
    根据勾股定理的几何意义可得正方形S的面积,继而根据正方形面积公式进行求解即可.
    【详解】
    根据勾股定理的几何意义,可知
    S=SE+SF
    =SA+SB+SC+SD
    =49 cm2,
    所以正方形S的边长为=7cm,
    故答案为7.
    本题考查了勾股定理,熟悉勾股定理的几何意义是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)一班的平均得分90,二班的平均得分90(2)一班的卫生成绩高.
    【解析】
    (1)、(2)利用平均数的计算方法,先求出所有数据的和,然后除以数据的总个数即可求出答案.
    【详解】
    解:(1)一班的平均得分=(95+85+90)÷3=90,
    二班的平均得分=(90+95+85)÷3=90,
    (2)一班的加权平均成绩=85×25%+90×35%+95×40%=90.75,
    二班的加权平均成绩=95×25%+85×35%+90×40%=89.5,
    所以一班的卫生成绩高.
    本题考查的是平均数和加权平均数的求法,关键是利用平均数和加权平均数的计算方法解答.
    15、(1)10;30;(2);(3)135米.
    【解析】
    (1)甲的速度=(300-100)÷20=10,根据图象知道一分的时间,走了15米,然后即可求出A地提速时距地面的高度;
    (2)根据甲登山的速度以及图象直接写出甲距地面高度y(米)和x(分)之间的函数关系式;
    (3)求出乙提速后y和x之间的函数关系式,再与(2)联立组成方程组解答即可.
    【详解】
    解:(1)甲的速度为:米分,
    根据图中信息知道乙一分的时间,走了15米,
    那么2分时,将走30米;
    故答案为:10;30;
    (2);
    (3)乙提速后速度为:(米秒),
    由,得,
    设乙提速后与的函数关系是,
    把,代入得,
    解得,
    乙提速后与的函数关系是,
    由,
    解得,
    (米,
    答:登山6.5分钟时,乙追上了甲,此时乙距地的高度为135米.
    本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,关键是正确理解题意.
    16、图2不是,图2不满足勾股定理,见解析
    【解析】
    七巧板有5个等腰直角三角形;有大、小两对全等三角形;一个正方形;一个平行四边形,根据这些图形的性质可解答.
    【详解】
    解:图1是由七巧板拼成的,图2不是,
    图2中上面的等腰直角三角形和①②不同.
    本题运用了等腰直角三角形、全等三角形、正方形、平行四边形的性质,关键是把握好每一块中边的特征.
    17、50.
    【解析】
    解:设该厂原来每天加工x个零件,
    由题意得:,
    解得x=50,
    经检验:x=50是原分式方程的解
    答:该厂原来每天加工50个零件.
    18、(1)△ABC 的面积为,AC =;(2)四边形 EFGH 的面积为.
    【解析】
    (1)首先过点A作AK⊥BC于K,由每一个小三角形都是边长为1个单位长度的正三角形,可求得每一个小正三角形的高为,进一步可求得△ABC的面积,然后由勾股定理可求得对角线AC的长;
    (2)过点E作EP⊥FH于P,则四边形EFGH的面积=2S△EFH=2××EP×FH= EP×FH,再代入数据计算即可得出结果.
    【详解】
    解:(1)如图③,过点A作AK⊥BC于K,
    ∵每一个小三角形都是边长为1个单位长度的正三角形,
    ∴每一个小正三角形的高为,
    ∴.
    ∴△ABC 的面积=;
    ∵BK=,∴.
    ∴.
    (2)如图④,过点E作EP⊥FH于P,则EP=,
    由题意可得四边形EFGH的面积=2S△EFH=2××EP×FH= EP×FH=.
    此题考查了平行四边形的性质、勾股定理和等边三角形的性质,解题的关键正确理解题意,作出所需辅助线,注意数形结合去思考分析,熟知等边三角形的性质和有关计算.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、8
    【解析】试题分析:根据平行四边形的性质可得:OA+OD=(AC+BD)=5,AD=BC=3,则△AOD的周长为5+3=8.
    考点:平行四边形的性质.
    20、1.
    【解析】
    试题分析:∵▱ABCD的周长为20cm,
    ∴2(BC+CD)=20,则BC+CD=2.
    ∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=6,
    ∴OD=OB=BD=3.
    又∵点E是CD的中点,
    ∴OE是△BCD的中位线,DE=CD,
    ∴OE=BC,
    ∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=5+3=1,
    即△DOE的周长为1.
    故答案是1.
    考点:三角形中位线定理.
    21、
    【解析】
    设折断处离地面的高度是x尺,根据勾股定理即可列出方程进行求解.
    【详解】
    设折断处离地面的高度是x尺,根据勾股定理得x2+32=(10-x)2,
    解得x=
    故折断处离地面的高度是尺.
    此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的应用.
    22、
    【解析】
    式子的分子和分母都乘以 即可得出 ,根据b是负数去掉绝对值符号即可.
    【详解】
    ∵b

    相关试卷

    贵州省桐梓县联考2024年九上数学开学学业水平测试模拟试题【含答案】:

    这是一份贵州省桐梓县联考2024年九上数学开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届贵州省兴仁县黔龙学校数学九上开学教学质量检测试题【含答案】:

    这是一份2025届贵州省兴仁县黔龙学校数学九上开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年上海民办日日学校九上数学开学学业水平测试试题【含答案】:

    这是一份2024-2025学年上海民办日日学校九上数学开学学业水平测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map