年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    海南省民族中学2024年数学九上开学学业水平测试模拟试题【含答案】

    立即下载
    加入资料篮
    海南省民族中学2024年数学九上开学学业水平测试模拟试题【含答案】第1页
    海南省民族中学2024年数学九上开学学业水平测试模拟试题【含答案】第2页
    海南省民族中学2024年数学九上开学学业水平测试模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    海南省民族中学2024年数学九上开学学业水平测试模拟试题【含答案】

    展开

    这是一份海南省民族中学2024年数学九上开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)正八边形的每一个内角的度数为:( )
    A.45°B.60°C.120°D.135°
    2、(4分)能判定四边形是平行四边形的条件是( )
    A.一组对边平行,另一组对边相等
    B.一组对边相等,一组邻角相等
    C.一组对边平行,一组邻角相等
    D.一组对边平行,一组对角相等
    3、(4分)已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD是平行四边形的有( )组.
    A.4B.5C.6D.7
    4、(4分)如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=AD,连接CE并延长交AD于点F,连接AE,过B点作BG⊥AE于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③S四边形EFHG=S△DEF+S△AGH;④BH平分∠ABE.其中不正确的结论有( )
    A.1个B.2个C.3个D.4个
    5、(4分)直角三角形两条直角边分别是和,则斜边上的中线等于( )
    A.B.13C.6D.
    6、(4分)用配方法解方程,则方程可变形为( )
    A.B.C.D.
    7、(4分)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为( )
    A.16B.8C.D.4
    8、(4分)一次函数y=﹣3x+5的图象不经过的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图是甲、乙两射击运动员的10次射击训练成绩的折射线统计图,则射击成绩较稳定的是__________(填“甲”或“乙”)。

    10、(4分)某商品经过两次连续的降价,由原来的每件250元降为每件160元,则该商品平均每次降价的百分率为____________.
    11、(4分)计算:若,求的值是 .
    12、(4分)已知一次函数y=2x+b,当x=3时,y=10,那么这个一次函数在y轴上的交点坐标为________.
    13、(4分)不等式4x﹣6≥7x﹣15的正整数解的个数是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)我市某中学对学校倡导的“压岁钱捐款活动”进行抽样调查,得到一组学生捐款的数据,
    下图是根据这组数据绘制的统计图,图中从左到右长方形的高度之比为2:4:5:8:6.又知此次调查中捐款20元和25元的学生一共28人.
    (1)他们一共调查了多少学生?
    (2)写出这组数据的中位数、众数;
    (3)若该校共有2000名学生,估计全校学生大约捐款多少元?
    15、(8分)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.
    (1)请你判断所画四边形的性状,并说明理由;
    (2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.
    16、(8分)如果P 是正方形ABCD 内的一点,且满足∠APB+∠DPC=180°,那么称点P 是正方形 ABCD 的“对补点”.
    (1)如图1,正方形ABCD 的对角线AC,BD 交于点M,求证:点M 是正方形ABCD 的对补点;
    (2)如图2,在平面直角坐标系中,正方形ABCD 的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.
    17、(10分)如图所示,在△ABC中,CD⊥AB于D,AC=4,BC=3,CD=(1)求AD的长;(2)求证:△ABC是直角三角形.
    18、(10分)解方程:
    (1)解分式方程:
    (2)解一元二次方程x2+8x﹣9=1.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 .
    20、(4分)在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向东驶去,若自行车与摩托车每秒分别行驶7.5米、10米,则10秒后两车相距______米;
    21、(4分)如图,AD∥EF∥GH∥PQ∥BC,AE=EG=GP=PB,AD=2,BC=10,则EF+PQ长为__________.
    22、(4分)2019年6月12日,重庆直达香港高铁的车票正式开售据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高在此之前技术部门做了大量测试,在一次测试中一高铁列车从地出发匀速驶向地,到达地停止;同时一普快列车从地出发,匀速驶向地,到达地停止且,两地之间有一地,其中,如图①两列车与地的距离之和(千米)与普快列车行驶时间(小时)之间的关系如图②所示则高铁列车到达地时,普快列车离地的距离为__________千米.

    23、(4分)如图,把正方形纸片对折得到矩形ABCD,点E在BC上,把△ECD沿ED折叠,使点C恰好落在AD上点C′处,点M、N分别是线段AC′与线段BE上的点,把四边形ABNM沿NM向下翻折,点A落在DE的中点A′处.若原正方形的边长为12,则线段MN的长为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在菱形ABCD中,CE⊥AB交AB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DC,CF至点G,H,使FH=CG,连接AG,DH交于点P.
    (1)依题意补全图1;
    (2)猜想AG和DH的数量关系并证明;
    (3)若∠DAB=70°,是否存在点G,使得△ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.
    25、(10分)如图,直线与坐标轴交于点、两点,直线与直线相交于点,交轴于点,且的面积为.
    (1)求的值和点的坐标;
    (2)求直线的解析式;
    (3)若点是线段上一动点,过点作轴交直线于点,轴,轴,垂足分别为点、,是否存在点,使得四边形为正方形,若存在,请求出点坐标,若不存在,请说明理由.
    26、(12分)计算:(- )2×( )-2+(-2019)0
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    180°-360°÷8=135°,故选D.
    错因分析 较易题.失分原因:没有掌握正多边形的内角公式.
    2、D
    【解析】
    根据平行四边形的判定定理进行推导即可.
    【详解】
    解:如图所示:
    若已知一组对边平行,一组对角相等,
    易推导出另一组对边也平行,
    两组对边分别平行的四边形是平行四边形.
    故根据平行四边形的判定,只有D符合条件.
    故选D.
    考点:本题考查的是平行四边形的判定
    点评:解答本题的关键是熟练掌握平行四边形的判定定理:
    ①两组对边分别平行的四边形是平行四边形;
    ②两组对边分别相等的四边形是平行四边形;
    ③两组对角分别相等的四边形是平行四边形;
    ④对角线互相平分的四边形是平行四边形;
    ⑤一组对边平行且相等的四边形是平行四边形.
    3、C
    【解析】
    分析:根据平行四边形的判定来进行选择.①两组对边分别平行的四边形是平行四边形;②两组对角分别平行的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.
    详解:共有6组可能:①②;①③;①④;①⑤;②⑤;④⑤.
    选择①与②:∵AB∥CD,
    ∴∠BAO=∠DCO,∠ABO=∠CDO,
    在△AOB与△COD中,

    ∴△AOB≌△COD,
    ∴AB=CD,
    ∴四边形ABCD为平行四边形.
    ①与③(根据一组对边平行且相等)
    ①与④:∵∠BAD=∠DCB
    ∴AD∥BC
    又AB∥DC
    根据两组对边分别平行可推出四边形ABCD为平行四边形.
    ①与⑤,根据定义,两组对边分别平行的四边形是平行四边形;
    ②与⑤:∵AD∥BC
    OA=OC
    ∴△AOD≌△COB
    故AD=BC,四边形ABCD为平行四边形.
    ④与⑤:根据两组对边分别平行可推出四边形ABCD为平行四边形.
    共有6种可能.
    故选C.
    点睛:本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.
    4、A
    【解析】
    先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误,根据三角形的内角和和角平分线的定义得到④正确.
    【详解】
    解:∵BD是正方形ABCD的对角线,
    ∴∠ABE=∠ADE=∠CDE=45°,AB=BC,
    ∵BE=BC,
    ∴AB=BE,
    ∵BG⊥AE,
    ∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,
    在Rt△ABH中,∠AHB=90°﹣∠ABH=67.5°,
    ∵∠AGH=90°,
    ∴∠DAE=∠ABH=22.5°,
    在△ADE和△CDE中,,
    ∴△ADE≌△CDE(SAS),
    ∴∠DAE=∠DCE=22.5°,
    ∴∠ABH=∠DCF,
    在△ABH和△DCF中,,
    ∴△ABH≌△DCF(ASA),
    ∴AH=DF,∠CFD=∠AHB=67.5°,
    ∵∠CFD=∠EAF+∠AEF,
    ∴67.5°=22.5°+∠AEF,
    ∴∠AEF=45°,故①②正确;
    如图,连接HE,
    ∵BH是AE垂直平分线,
    ∴AG=EG,
    ∴S△AGH=S△HEG,
    ∵AH=HE,
    ∴∠AHG=∠EHG=67.5°,
    ∴∠DHE=45°,
    ∵∠ADE=45°,
    ∴∠DEH=90°,∠DHE=∠HDE=45°,
    ∴EH=ED,
    ∴△DEH是等腰直角三角形,
    ∵EF不垂直DH,
    ∴FH≠FD,
    ∴S△EFH≠S△EFD,
    ∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,
    ∵∠AHG=67.5°,
    ∴∠ABH=22.5°,
    ∵∠ABD=45°,
    ∴∠ABH
    ∴BH平分∠ABE,故④正确;
    故选:A.
    此题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.
    5、A
    【解析】
    根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.
    【详解】
    解:∵直角三角形两直角边长为5和12,
    ∴斜边==13,
    ∴此直角三角形斜边上的中线等于.
    故选:A.
    此题主要考查勾股定理及直角三角形斜边上的中线的性质;熟练掌握勾股定理,熟记直角三角形斜边上的中线的性质是解决问题的关键.
    6、D
    【解析】
    先化二次项的系数为1,然后把常数项移到右边,再两边加上一次项系数一半的平方,把方程的左边配成完全平方的形式.
    【详解】
    系数化为1得:
    移项:
    配方:

    本题考查用配方法解一元二次方程的步骤,熟练掌握配方法解方程是本题关键
    7、A
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.
    【详解】
    解:∵E、F分别是AB、AC的中点,
    ∴EF是△ABC的中位线,
    ∴BC=2EF=2×2=4,
    ∴菱形ABCD的周长=4BC=4×4=1.
    故选A.
    本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
    8、C
    【解析】
    一次项系数-3<1,则图象经过二、四象限;常数项5>1,则图象还过第一象限.
    【详解】
    解:∵-3<1,∴图象经过二、四象限;
    又∵5>1,∴直线与y轴的交点在y轴的正半轴上,图象还过第一象限.
    所以一次函数y=-3x+5的图象经过一、二、四象限,不经过第三象限.
    故选:C.
    一次函数的图象经过第几象限,取决于x的系数及常数是大于1或是小于1.可借助草图分析解答.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、乙
    【解析】
    从折线图中得出甲乙的射击成绩,再利用方差的公式计算.
    【详解】
    解:由图中知,甲的成绩为8,9,7,8,10,7,9,10,7,10,
    乙的成绩为7,7,8,9,8,9,10,9,9,9,
    =(8+9+7+8+10+7+9+10+7+10)÷10=8.5,
    =(7+7+8+9+8+9+10+9+9+9)÷10=8.5,
    甲的方差S甲2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.35
    乙的方差S乙2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85,
    ∴S2乙<S2甲.
    故答案为:乙.
    本题考查了方差的定义与意义,熟记方差的计算公式是解题的关键,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    10、20%
    【解析】
    设平均每次降价的百分率为x,则第一次降价后的单价是原来的(1-x),第二次降价后的单价是原来的(1-x)2,根据题意列方程求解即可.
    【详解】
    设平均每次降价的百分率为x,根据题意列方程得
    250×(1-x)2=160,
    解得x1=0.2,2,x2=1.8(不符合题意,舍去),
    即该商品平均每次降价的百分率为20%,
    故答案为:20%.
    本题考查了一元二次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.
    11、﹣.
    【解析】
    试题分析:∵-=3,
    ∴y-x=3xy,
    ∴====.
    故答案为:.
    点睛:本题考查了分式的化简求值,把已知进行变形得出y-x=3xy,并进行整体代入是解决此题的关键.
    12、 (0,4)
    【解析】解:∵在一次函数y=2x+b中,当x=3时,y=10,∴6+b=10,解得:b=4,∴一次函数的解析式为y=2x+4,∴当x=0时,y=4,∴这个一次函数在y轴上的交点坐标为(0,4).故答案为:(0,4).
    点睛:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
    13、3
    【解析】
    首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可
    【详解】
    不等式的解集是x≤3,
    故不等式4x-6≥7x-15的正整数解为1,2,3
    故答案为:3
    此题考查一元一次不等式的整数解,掌握运算法则是解题关键
    三、解答题(本大题共5个小题,共48分)
    14、(1)50人(2)20,20(3)34800
    【解析】
    【分析】(1)根据捐款20元和25与的学生一共是28人及这两组所占的总人数比例可求出总人数;
    (2)众数即人数最多的捐款数,中位数要找到从小到大排列位于中间的数据;
    (3)首先计算平均捐款数,再进一步估计总体平均捐款数,从而计算全校捐款数.
    【详解】(1)(1)28÷=50(名),
    所以一共调查了50名学生;
    (2)设捐款20元和25元的学生分别有8x人和6x人.
    则有:8x+6x=28,
    ∴x=2
    5个组的人数分别为4,8,10,16,12,
    ∴这组数据的中位数是20元,众数是20元;
    (3)平均每个学生捐款的数量是:
    (5×4+10×8+15×10+20×16+25×12)=17.4(元),
    17.4×2000=34800(元),
    所以全校学生大约捐款34800元.
    【点睛】本题考查了统计图、用样本估计总体、中位数、众数等,考查了利用频数分布直方图以及利用频数分布直方图获取信息的能力,解答本题的关键是理解众数、中位数的概念,能够根据部分所占的百分比计算总体,能够用样本平均数估计总体平均数.
    15、(1)详见解析
    (2)EF= 8
    【解析】
    (1)由AE=AF=ED=DF,根据四条边都相等的四边形是菱形,即可证得:四边形AEDF是菱形,
    (2)首先连接EF,由AE=AF,∠A=60°,可证得△EAF是等边三角形,则可求得线段EF的长.
    【详解】
    解:(1)菱形,理由如下:
    ∵根据题意得:AE=AF=ED=DF,
    ∴四边形AEDF是菱形;
    (2)连接EF,
    ∵AE=AF,∠A=60°,∴△EAF是等边三角形,
    ∴EF=AE=8厘米.
    16、(1)证明见解析;
    (2)对补点如:N(,).证明见解析
    【解析】
    试题分析:(1)根据正方形的对角线互相垂直,得到∠DMC=∠AMB=90°,从而得到点M是正方形ABCD的对补点.(2) 在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上
    除(2,2)外的任意点均可,通过证明△DCN≌△BCN,得到∠CND=∠CNB,利用邻补角的性质即可得出结论.
    试题解析:
    (1)
    ∵四边形ABCD是正方形,
    ∴ AC⊥BD.
    ∴ ∠DMC=∠AMB=90°.
    即 ∠DMC+∠AMB=180°.
    ∴ 点M是正方形ABCD的对补点.
    (2)对补点如:N(,).
    说明:在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上
    除(2,2)外的任意点均可.
    证明(方法一):
    连接AC ,BD
    由(1)得此时对角线的交点为(2,2).
    设直线AC的解析式为:y=kx+b,
    把点A(1,1),C(3,3)分别代入,
    可求得直线AC的解析式为:y=x.
    则点N(,)是直线AC上除对角线交点外的一点,且在正方形ABCD内.
    连接AC,DN,BN,
    ∵ 四边形ABCD是正方形,
    ∴ DC=BC,∠DCN=∠BCN.
    又∵ CN=CN,
    ∴ △DCN≌△BCN.
    ∴ ∠CND=∠CNB.
    ∵ ∠CNB+∠ANB=180°,
    ∴ ∠CND+∠ANB=180°.
    ∴ 点N是正方形ABCD的对补点.
    证明(方法二):
    连接AC ,BD,
    由(1)得此时对角线的交点为(2,2).
    设点N是线段AC上的一点(端点A,C及对角线交点除外),
    连接AC,DN,BN,
    ∵ 四边形ABCD是正方形,
    ∴ DC=BC,∠DCN=∠BCN.
    又∵ CN=CN,
    ∴ △DCN≌△BCN.
    ∴ ∠CND=∠CNB.
    ∵ ∠CNB+∠ANB=180°,
    ∴ ∠CND+∠ANB=180°.
    ∴ 点N是正方形ABCD除对角线交点外的对补点.
    设直线AC的解析式为:y=kx+b,
    把点A(1,1),C(3,3)分别代入,可求得直线AC的解析式为:y=x.
    在1<x<3范围内,任取一点均为该正方形的对补点,如N(,).
    17、(1),(2)见解析.
    【解析】
    (1)依据∠ADC=90°,利用勾股定理可得AD=;
    (2)依据勾股定理的逆定理,可得BC2+AC2=AB2,即可得到△ABC是直角三角形.
    【详解】
    解:(1)∵CD⊥AB,
    ∴∠ADC=90°,
    ∴AD==;
    (2)证明:由上题知AD=,
    同理可得BD=,
    ∴AB=AD+BD=5,
    ∵32+42=52,
    ∴BC2+AC2=AB2,
    ∴△ABC是直角三角形.
    本题考查了勾股定理,勾股定理逆定理,根据图形判断出所求的边所在的直角三角形是解题的关键.
    18、 (1)x=3; (2)1或-9.
    【解析】
    (1)按照解分式方程的一般步骤进行解答即可;
    (2)根据本题特点,用“因式分解法”进行解答即可.
    详解:
    (1)解分式方程:
    去分母得:,
    移项得:,
    合并同类项得:,
    系数化为1得:,
    检验:当时,,
    ∴原方程的解是:;
    (2)解一元二次方程x2+8x﹣9=1,
    原方程可化为:,
    ∴或,
    解得:.
    点睛:(1)解答第1小题的关键是:①熟知解分式方程的基本思路是:去分母,化分式方程为整式方程;②知道解分式方程,当求得未知数的值后,需检验所得结果是否是原方程的根,再作结论;(2)解第2小题的关键是能够通过因式分解把原方程化为:的形式.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、15.6
    【解析】
    试题分析:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,
    最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),
    则这六个整点时气温的中位数是15.6℃.
    考点:折线统计图;中位数
    20、1
    【解析】
    直接根据题意画出直角三角形,进而利用勾股定理得出答案.
    【详解】
    解:如图所示:
    由题意可得,在Rt△ACB中,AC=75m,BC=100m,
    则AB==1(m),
    故答案为:1.
    本题考查了勾股定理的应用,正确画出图形是解题的关键.
    21、1
    【解析】
    由AD∥EF∥GH∥PQ∥BC,AE=EG=GP=PB,可得GH是梯形ABCD的中位线,EF是梯形AGHD的中位线,PQ是梯形GBCH的中位线,然后根据梯形中位线的性质求解即可求得答案.
    【详解】
    ∵AD∥EF∥GH∥PQ∥BC,AE=EG=GP=PB
    ∴GH是梯形ABCD的中位线,EF是梯形AGHD的中位线,PQ是梯形GBCH的中位线
    ∵AD=2,BC=10



    故答案为:1.
    本题考查了梯形中位线的问题,掌握梯形中位线的性质是解题的关键.
    22、1
    【解析】
    由图象可知4.5小时两列车与C地的距离之和为0,于是高铁列车和普快列车在C站相遇,由于AC=2BC,因此高铁列车的速度是普快列车的2倍,相遇后图象的第一个转折点,说明高铁列车到达B站,此时两车距C站的距离之和为1千米,由于V高铁=2V普快,因此BC距离为1千米的三分之二,即240千米,普快离开C占的距离为1千米的三分之一,即120千米,于是可以得到全程为240+240×2=720千米,当高铁列车到达B站时,普快列车离开B站240+120=1千米,此时距A站的距离为720-1=1千米.
    【详解】
    ∵图象过(4.5,0)
    ∴高铁列车和普快列车在C站相遇
    ∵AC=2BC,
    ∴V高铁=2V普快,
    BC之间的距离为:1×=240千米,全程为AB=240+240×2=720千米,
    此时普快离开C站1×=120千米,
    当高铁列车到达B站时,普快列车距A站的距离为:720-120-240=1千米,
    故答案为:1.
    此题考查一次函数的应用.解题关键是由函数图象得出相关信息,明确图象中各个点坐标的实际意义.联系行程类应用题的数量关系是解决问题的关键,图象与实际相结合容易探求数量之间的关系,也是解决问题的突破口.
    23、2
    【解析】
    作A′G⊥AD于G,A′H⊥AB于H,交MN于O,连接AA′交MN于K.想办法求出MK,再证明MN=4MK即可解决问题;
    【详解】
    解:如图,作A′G⊥AD于G,A′H⊥AB于H,交MN于O,连接AA′交MN于K.
    由题意四边形DCEC′是正方形,△DGA′是等腰直角三角形,
    ∴DG=GA′=3,AG=AD﹣DG=9,设AM=MA′=x,
    在Rt△MGA′中,x2=(9﹣x)2+32,
    ∴x=5,AA′=,
    ∵sin∠MAK=,
    ∴ ,
    ∴MK=,
    ∵AM∥OA′,AK=KA′,
    ∴MK=KO,
    ∵BN∥HA′∥AD,DA′=EA′,
    ∴MO=ON,
    ∴MN=4MK=2,
    故答案为2.
    本题考查翻折变换、正方形的性质.矩形的性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)见解析;(2) AG=DH,理由见解析;(3) 不存在.理由见解析.
    【解析】
    【分析】(1)依题意画图;
    (2)根据菱形性质得,∥,;由点为点关于的对称点,得垂直平分,故,,所以,再证,
    由,,得.可证△≌△.
    (3)由(2)可知,∠DAG=∠CDH,∠G=∠GAB,
    证得∠DPA=∠PDG+∠G=∠DAG+∠GAB=70°>60°,故△ADP不可能是等边三角形.
    【详解】
    (1)补全的图形,如图所示.
    (2)AG=DH.
    证明:∵四边形ABCD是菱形,
    ∴,∥,.
    ∵点为点关于的对称点,
    ∴垂直平分.
    ∴,.
    ∴.
    又∵,
    ∴.
    ∵,,
    ∴.
    ∴△≌△.
    ∴.
    (3)不存在.
    理由如下:
    由(2)可知,∠DAG=∠CDH,∠G=∠GAB,
    ∴∠DPA=∠PDG+∠G=∠DAG+∠GAB=70°>60°.
    ∴△ADP不可能是等边三角形.
    【点睛】本题考核知识点:菱形,轴对称,等边三角形. 解题关键点:此题比较综合,要熟记菱形性质,全等三角形的判定和性质,轴对称性质,等边三角形判定.
    25、(1),点为;(2);(3)存在,点为,理由见解析
    【解析】
    (1)利用一次函数图象上点的坐标特征可求出m的值及点A的坐标;
    (2)过点P作PH⊥x轴,垂足为H,则PH=,利用三角形的面积公式结合△PAC的面积为,可求出AC的长,进而可得出点C的坐标,再根据点P,C的坐标,利用待定系数法即可求出直线PC的解析式;
    (3)由题意,可知:四边形EMNQ为矩形,设点E的纵坐标为t,利用一次函数图象上点的坐标特征可得出点E的坐标为(t-3,t)、点Q的坐标为(,t),利用正方形的性质可得出关于t的一元一次方程,解之即可得出结论.
    【详解】
    解:(1)把点代入直线,
    即 时,
    直线,当时, 得:
    ,点为
    (2)过点作轴,垂足为,由(1)得,

    解得:
    点为
    设直线为,把点、代入,得:
    解得:
    直线的解析式为
    (3)由已知可得,四边形为矩形,
    设点的纵坐标为,则 得:
    点为

    点的纵坐标也为
    点在直线上,当时,


    当时,矩形为正方形,所以

    故点为
    本题考查了一次函数图象上点的坐标特征、三角形的面积、解一元一次方程、待定系数法求一次函数解析式以及正方形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出m的值及点A的坐标;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)利用正方形的性质,找出关于t的一元一次方程.
    26、2
    【解析】
    分别计算乘方,负指数幂,零次幂,然后再按运算顺序进行计算即可.
    【详解】
    原式= ×4+1
    =1+1=2.
    考查了实数运算,解题关键是熟记其运算法则.
    题号





    总分
    得分
    批阅人

    相关试卷

    海南省民族中学2025届九上数学开学达标测试试题【含答案】:

    这是一份海南省民族中学2025届九上数学开学达标测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    海南省海口市秀英区第十四中学2024-2025学年九上数学开学学业水平测试模拟试题【含答案】:

    这是一份海南省海口市秀英区第十四中学2024-2025学年九上数学开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    海南省东方市民族中学2024年九上数学开学学业质量监测试题【含答案】:

    这是一份海南省东方市民族中学2024年九上数学开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map