河北保定竞秀区2024年数学九上开学质量检测试题【含答案】
展开
这是一份河北保定竞秀区2024年数学九上开学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为( )
A.B.
C.D.
2、(4分)下列各组数据中能作为直角三角形的三边长的是( )
A.1,2,2B.C.13,14,15D.6,8,10
3、(4分)如图,在周长为 18cm 的▱ABCD 中,AC、BD 相交于点 O,OE⊥BD 交 AD 于 E,则△ABE的周长为( )
A.6cmB.7cm
C.8cmD.9cm
4、(4分)已知点的坐标是,则点关于轴的对称点的坐标是( )
A.B.C.D.
5、(4分)下列变量之间关系中,一个变量是另一个变量的正比例函数的是( )
A.正方形的面积S随着边长x的变化而变化
B.正方形的周长C随着边长x的变化而变化
C.水箱有水10升,以0.5升/分的流量往外放水,剩水量(升)随着放水时问t(分)的变化而变化
D.面积为20的三角形的一边a随着这边上的高h的变化而变化
6、(4分)在平行四边形ABCD中,AB=3,BC=4,当平行四边形ABCD的面积最大时,下结论正确的有( )
①AC=5 ②∠A+∠C=180° ③AC⊥BD ④AC=BD
A.①②④B.①②③C.②③④D.①③④
7、(4分)如图,在ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )
A.BO=DOB.CD=ABC.∠BAD=∠BCDD.AC=BD
8、(4分)如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于( )
A.2B.3C.4D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算:3-2= ;
10、(4分)如图,在长20米、宽10米的长方形草地内修建了宽2米的道路,则草地的面积是______平方米.
11、(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=4,则AD=_____.
12、(4分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是_____
13、(4分)正六边形的每个内角等于______________°.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,已知一次函数的图象与过、的直线交于点P,与x轴、y轴分别相交于点C和点D.
求直线AB的解析式及点P的坐标;
连接AC,求的面积;
设点E在x轴上,且与C、D构成等腰三角形,请直接写出点E的坐标.
15、(8分)已知如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点,A点坐标是(﹣2,1),B点坐标(1,n);
(1)求出k,b,m,n的值;
(2)求△AOB的面积;
(3)直接写出一次函数的函数值大于反比例函数的函数值的x的取值范围.
16、(8分)如图,Rt△OAC是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点C在y轴上,OA和OC是方程x−(3+)x+3=0的两根(OA>OC),∠CAO=30°,将Rt△OAC折叠,使OC边落在AC边上,点O与点D重合,折痕为CE.
(1)求点D的坐标;
(2)设点M为直线CE上的一点,过点M作AC的平行线,交y轴于点N,是否存在这样的点M,使得以M、N、D.C为顶点的四边形是平行四边形?若存在,请求出符合条件的点M的坐标;若不存在,请说明理由.
17、(10分)如图,BD为平行四边形ABCD的对角线,按要求完成下列各题.
(1)用直尺和圆规作出对角线BD的垂直平分线交AD于点E,交BC于点F,垂足为O,(保留作图痕迹,不要求写作法)
(2)在(1)的基础上,连接BE和DF,求证:四边形BFDE是菱形.
18、(10分)已知等腰三角形的两边长分别为a,b,且a,b满足|2a-3b+5|+(2a+3b-13)2=0,求此等腰三角形的周长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn=_____.
20、(4分)如图,点D是Rt△ABC斜边AB的中点,AC=1,CD=1.5,那么BC=_____.
21、(4分)在平行四边形ABCD中,若∠A+∠C=160°,则∠B=_____.
22、(4分)如图,在△ABC中,∠CAB=70º,在同一平面内,将△ABC绕点逆时针旋转50º到△的位置,则∠= _________度.
23、(4分)如图,点是函数的图象上的一点,过点作轴,垂足为点.点为轴上的一点,连结、.若的面积为,则的值为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校八年级在一次广播操比赛中,三个班的各项得分如下表:
(1) 填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是_________;在动作准确方面最有优势的是_________班
(2) 如果服装统一、动作整齐、动作准确三个方面按20%、30%、50%的比例计算各班的得分,请通过计算说明哪个班的得分最高.
25、(10分)如图,在平面直角坐标系中,直线EF交x,y轴子点F,E,交反比例函数(x>0)图象于点C,D,OE=OF=,以CD为边作矩形ABCD,顶点A与B恰好落在y轴与x轴上.
(1)若矩形ABCD是正方形,求CD的长;
(2)若AD:DC=2:1,求k的值.
26、(12分)如图,四边形是正方形,是边上一点,是的中点,平分.
(1)判断与的数量关系,并说明理由;
(2)求证:;
(3)若,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.
【详解】
因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间,减去提前完成时间,可以列出方程:
故选:D.
这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.
2、D
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.
【详解】
解:A、,不能构成直角三角形,故不符合题意;
B、,不能构成直角三角形,故不符合题意;
C、,不能构成直角三角形,故不符合题意;
D、,能构成直角三角形,故符合题意.
故选:D.
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
3、D
【解析】
利用垂直平分线的性质即可求出BE=DE,所以△ABE的周长=AB+AE+BE=AB+AD.
【详解】
∵▱ABCD的对角线AC,BD相交于点O,
∴O为BD的中点,
∵OE⊥BD,
∴BE=DE,
∴△ABE的周长=AB+AE+BE=AB+AD=×18=9(cm),
故答案为:D
本题考查的是平行四边形的性质及线段垂直平分线的性质,解答此题的关键是将三角形的三边长转为平行四边形的一组邻边的长.
4、B
【解析】
根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.
【详解】
解:∵点A的坐标为(1,2),
∴点A关于y轴的对称点的坐标是(-1,2),
故选:B.
此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.
5、B
【解析】
先列出各选项中的函数解析式,再根据一次函数的定义,二次函数的定义,正比例函数的定义,反比例函数的定义,进行判断,可得出答案.
【详解】
解:A∵、s=x2 ,
∴s是x的二次函数,故A不符合题意;
B、∵C=4x,
∴C是x的正比例函数,故B符合题意;
C、设剩水量为v(升),
∵v=10-0.5t,
∴v是t的一次函数,故C不符合题意;
D、∵, 即,
∴a是h的反比例函数,故D不符合题意;
故答案为:B
本题主要考查的是正比例函数的定义,熟练掌握正比例函数的定义是解题的关键.
6、A
【解析】
当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.
【详解】
根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,
∴∠BAD=∠ABC=∠BCD=∠CDA=90°,AC=BD,
∴∠BAD+∠BCD=180° ,AC==5,
①正确,②正确,④正确;③不正确;
故选A.
本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.
7、D
【解析】
试题分析:根据平行四边形的性质判断即可:
A、∵四边形ABCD是平行四边形,
∴OB=OD(平行四边形的对角线互相平分),正确,不符合题意;
B、∵四边形ABCD是平行四边形,
∴CD=AB(平行四边形的对边相等),正确,不符合题意;
C、∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD(平行四边形的对角相等),正确,不符合题意;
D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意.
故选D.
8、C
【解析】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AD=BC=8,CD=AB=6,
∴∠F=∠DCF,
∵∠C平分线为CF,
∴∠FCB=∠DCF,
∴∠F=∠FCB,
∴BF=BC=8,
同理:DE=CD=6,
∴AF=BF−AB=2,AE=AD−DE=2
∴AE+AF=4
故选C
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据负整数指数为正整数指数的倒数计算.
解:3-2=.故答案为.
10、144米1.
【解析】
将道路分别向左、向上平移,得到草地为一个长方形,分别求出长方形的长和宽,再用长和宽相乘即可.
【详解】
解:将道路分别向左、向上平移,得到草地为一个长方形,
长方形的长为10-1=18(米),宽为10-1=8(米),
则草地面积为18×8=144米1.
故答案为:144米1.
本题考查了平移在生活中的运用,将道路分别向左、向上平移,得到草地为一个长方形是解题的关键.
11、2
【解析】
依据四边形ABCD是矩形,E是CD的中点,可得AB=CD=4,DE=2,由折叠可得,AE=AB=4,再根据勾股定理,即可得到AD的长.
【详解】
∵四边形ABCD是矩形,E是CD的中点,
∴AB=CD=4,DE=2,
由折叠可得,AE=AB=4,
又∵∠D=90°,
∴Rt△ADE中,
故答案为:2
本题主要考查了折叠问题以及勾股定理的运用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.
12、4
【解析】
根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得出四边形DBEC是菱形,由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.
【详解】
∵CE∥DB,BE∥DC,
∴四边形DBEC为平行四边形.
又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,
∴CD=BD=AC,
∴平行四边形DBEC是菱形;
∵点D,F分别是AC,AB的中点,AD=3,DF=1,
∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC,
∴BC=1DF=1.
又∵∠ABC=90°,
∴AB==.
∵平行四边形DBEC是菱形,
∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4,
故答案为4.
考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题.
13、120
【解析】
试题解析:六边形的内角和为:(6-2)×180°=720°,
∴正六边形的每个内角为:=120°.
考点:多边形的内角与外角.
三、解答题(本大题共5个小题,共48分)
14、(1),,P(2);(3)点E的坐标为、、或.
【解析】
(1)由点A、B的坐标,利用待定系数法即可求出直线AB的解析式,再联立直线AB、CD的解析式成方程组,通过解方程组可求出点P的坐标;
(2)过点P作PM⊥BC于点M,利用一次函数图象上点的坐标特征可求出点C的坐标,结合点A、B、P的坐标,可得出BC、OA、PM的值,利用三角形的面积公式结合S△PAC=S△PBC-S△ABC即可求出△PAC的面积;
(3)利用一次函数图象上点的坐标特征可得出点C、D的坐标,进而可得出CD的长度,分DE=DC、CD=CE、EC=ED三种情况求出点E的坐标,此题得解.
【详解】
设直线AB的解析式为,
将、代入,得:
,解得:
直线AB的解析式为.
联立直线AB、CD的解析式成方程组,得:
,解得:,
点P的坐标为
过点P作于点M,如图1所示.
点P的坐标为,
.
一次函数的图象与x轴交于点C,
点C的坐标为,
.
点A的坐标为,点B的坐标为,
,,,
.
为等腰三角形,
或或如图.
一次函数的图象与x轴、y轴分别相交于点C和点D,
点C的坐标为,点D的坐标为,
,.
当时,,
,
点E的坐标为;
当时,,
点E的坐标为或;
当时,点E与点O重合,
点E的坐标为.
综上所述:点E的坐标为、、或.
本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、三角形的面积以及等腰三角形的判定,解题的关键是:(1)由点A、B的坐标,利用待定系数法求出直线AB的解析式;(2)利用切割法找出S△PAC=S△PBC-S△ABC;(3)分DE=DC、CD=CE、EC=ED三种情况找出点E的坐标.
15、(1)k=﹣1,b=﹣1,m=﹣2,n=﹣2;(2)S△AOB=;(3)x<﹣2或0<x<1
【解析】
(1)将点A,点B坐标代入两个解析式可求k,b,m,n的值;(2)由题意可求点C坐标,根据△AOB的面积=△ACO面积+△BOC面积,可求△AOB的面积;(3)根据一次函数图象在反比例图象的上方,可求x的取值范围
【详解】
解:(1)∵反比例函数y=的图象过点A(﹣2,1),B(1,n)
∴m=﹣2×1=﹣2,m=1×n
∴n=﹣2
∴B(1,﹣2)
∵一次函数y=kx+b的图象过点A,点B
∴
解得:k=﹣1,b=﹣1
∴直线解析式y=﹣x﹣1
(2)∵直线解析式y=﹣x﹣1与x轴交于点C
∴点C(﹣1,0)
∴S△AOB=×1×1+×1×2=
(3)由图象可得:x<﹣2或0<x<1
本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.
16、(1)D(,);(2)M(− ,);
【解析】
(1)由折纸可以知道CD=OC,从而求出AD,作DF⊥OA于F解直角三角形可以求出D点的坐标.
(2)存在满足条件的M点,利用三角形全等和平行线等分线段定理可以求出M点对应的坐标.
【详解】
(1) 解方程x−(3+)x+3=0得:
x =,x=3
∵OA>OC
∴OA=3,OC=;
在Rt△AOC中,由勾股定理得:
AC= =2,
由轴对称得:CO=CD=,作DF⊥OA于F,
∴AD=,作DF⊥OA,且∠CAO=30°,
∴DF=,由勾股定理得:
AF= ,
∴OF=,∴OF=AF
∴D(,);
(2)∵MN∥AC,
∠NMF=∠ADF,∠FNM=∠FAD
∵OF=AF
∴△ADF≌△NMF(AAS),
∴MF=DF=,NF=AF=,
∴M (,− ),作MG⊥OA,
∵四边形MCDN和四边形CNMD是平行四边形
∴MC=ND,ND=CM∴MC=CM
∴GO=OF=,OE=1
∴GE= ,
∴EOC△∽△EGM
∴
∴ 解得:
MG= ,
∴M(− ,)
此题考查一次函数综合题,解题关键在于求出AD然后作辅助线.
17、(1)作图见解析;
(2)证明见解析.
【解析】
试题分析:(1)、根据线段中垂线的作法作出中垂线,得出答案;(2)、根据平行四边形的性质得出△DOE和△BOF全等,从而根据对角线互相平分的四边形为平行四边形得出四边形BFDE为平行四边形,然后结合对角线互相垂直得出菱形.
试题解析:(1)、作图
(2)在□ABCD中,AD∥BC ∴∠ADB=∠CBD 又∵ EF垂直平分BD
∴BO=DO ∠EOD=∠FOB=90° ∴△DOE≌△BOF (ASA) ∴EO=FO
∴ 四边形BFDE 是平行四边形 又∵ EF⊥BD ∴□BFDE为菱形
18、2或1.
【解析】分析:
由已知条件|2a-3b+5|+(2a+3b-13)2=0,可得2a-3b+5=0且2a+3b-13=0,由此即可解得a和b的值,再分a为等腰三角形底和b为等腰三角形的底两种情况分别计算出等腰三角形的周长即可.
详解:
∵|2a-3b+5|+(2a+3b-13)2=0,
∴2a-3b+5=0①,且2a+3b-13=0②,
由①+②可得:4a-1=0,解得:a=2,
将a=2代入②得:4+3b-13=0,解得:b=3,
(1)当a为等腰三角形的底边时,等腰三角形的三边长为2,3,3,此时能围成三角形,其周长为1;
(2)当b为等腰三角形的底边时,等腰三角形的三边长为2,2,3,此时能围成三角形,其周长为2.
故此等腰三角形的周长为2或1.
点睛:(1)两个非负数的和为0,则这两个非负数都为0;(2)求得a、b的值后要分a为等腰三角形的底边和b为等腰三角形的底边两种情况讨论.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
根据一元二次方程根与系数的关系即可得出m+n=﹣2,mn=﹣1,将其代入m+n+mn中即可求出结论.
【详解】
∵m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,
∴m+n=﹣2,mn=﹣1,
则m+n+mn=﹣2﹣1=﹣1.
故答案为:﹣1.
本题考查了一元二次方程根与系数的关系,熟练运用一元二次方程根与系数的关系是解决问题的关键.
20、2
【解析】
首先根据直角三角形斜边中线定理得出AB,然后利用勾股定理即可得出BC.
【详解】
∵在Rt△ABC中,∠ACB=90°,D是AB的中点,
∴AB=2CD=17,
∴BC===2,
故答案为:2.
此题主要考查直角三角形斜边中线定理以及勾股定理的运用,熟练掌握,即可解题.
21、100°
【解析】
由平行四边形的性质得出对角相等,邻角互补,∠A=∠C,∠A+∠B=180°,由∠A+∠C=160°,得出∠A=∠C=80°,即可求出∠B.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠A=∠C,∠A+∠B=180°,
∵∠A+∠C=160°,
∴∠A=∠C=80°,
∴∠B=180°﹣∠A=100°;
故答案为:100°.
本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等,邻角互补的性质是解决问题的关键.
22、10
【解析】
根据旋转的性质找到对应点、对应角进行解答.
【详解】
∵△ABC绕点A逆时针旋转50°得到△AB′C′,
∴∠BAB′=50°,
又∵∠BAC=70°,
∴∠CAB′=∠BAC-∠BAB′=1°.
故答案是:1.
本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点--旋转中心;②旋转方向;③旋转角度.
23、
【解析】
连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.
【详解】
解:连结OA,如图
∵AB⊥y轴,
∴OC∥AB,
∴S△OAB=S△ABC=4,
而S△OAB=|k|,
∴|k|=4,
∵k<0,
∴k=﹣8
故答案为﹣8
本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
二、解答题(本大题共3个小题,共30分)
24、(1)89;八(1);(2)八(1)班得分最高.
【解析】
(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作准确的分数最高即可;
(2)利用加权平均数分别计算三个班的得分后即可得解.
【详解】
解:(1)服装统一方面的平均分为:=89分;
动作准确方面最有优势的是八(1)班;
故答案为:89;八(1);
(2)∵八(1)班的平均分为:=84.7分;
八(2)班的平均分为:=82.8分;
八(3)班的平均分为:=83.9分;
∴得分最高的是八(1)班.
本题考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.
25、 (1);(2)k=12
【解析】
【分析】(1)根据等腰三角形的性质以及勾股定理可得EF的长,继而根据正方形的性质即可得DE=DC=CF,从而即可求得CD的长;
(2)由四边形ABCD是矩形,可得AD=BC,根据(1)得:AD=DE,BC=FC,且 2CD=AD,从而可得 2CD=DE=CF,根据DE+CD+FC=EF,继而可求得DE的长,作 DG⊥AE,垂足为点 G,在等腰直角三角形 ADE 中,求得DG=EG = 2,继而求得OG长,从而可得点D( 2, 3) ,即可求得k.
【详解】(1)∵四边形ABCD是正方形,
∴AB=BC=CD=AD,
∠ADC=∠BCD=90°,
∴∠ADE=∠BCF=90°,
∵OE=OF= 5,
又∵∠EOF=90°,
∴∠OEF=∠OFE=45°,FE=10,
∴CD=DE=AD=CB=CF=;
(2)∵四边形ABCD是矩形,
∴AD=BC,
∵由(1)得:AD=DE,BC=FC,且 2CD=AD,
∴2CD=DE=CF,
∵DE+CD+FC=EF,
∴DE= EF =4,
作 DG⊥AE,垂足为点 G,
由(1)得在等腰直角三角形 ADE 中,DG=EG=DE = 2,
∴OG=OE-EG= 5- 2= 3,
∴D( 2, 3) ,
得:k=12.
【点睛】本题考查了反比例函数与几何的综合,涉及到等腰直角三角形的性质、正方形的性质、矩形的性质等,熟练掌握相关性质和定理以及反比例函数比例系数k的几何意义是解题的关键.
26、(1)见解析;(2)见解析;(3).
【解析】
(1)利用平行线的性质得出,再根据角平分线的性质即可解答
(2)过点作交于点,连接,利用HL证明,即可解答
(3)设,则,再利用勾股定理求出a即可解答.
【详解】
(1)如图所示:
与的数量关系:,
理由如下:
,
∵平分,
,
.
(2)如图所示:
过点作交于点,连接.
∵平分,
,
又是的中点,,
,
在和中,
,
,
又,
.
(3)设,则,
在中,由勾股定理得:
解得:,
.
此题考查全等三角形的判定与性质,勾股定理,角平分线的性质,平行线的性质,解题关键在于作辅助线.
题号
一
二
三
四
五
总分
得分
服装统一
动作整齐
动作准确
八(1)班
80
84
87
八(2)班
97
78
80
八(3)班
90
78
85
相关试卷
这是一份2025届河北省保定莲池区六校联考数学九上开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份+河北省保定市竞秀区2023-2024学年九年级下学期开学考试数学试题,共12页。
这是一份河北省保定市竞秀区乐凯中学2023-2024学年九上数学期末检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,关于抛物线,下列说法错误的是等内容,欢迎下载使用。