河北省保定高碑店市2024-2025学年九上数学开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为( )
A.45°B.15°C.10°D.125°
2、(4分)下列图形,可以看作中心对称图形的是( )
A.B.C.D.
3、(4分)在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M的坐标为,N的坐标为,则在第二象限内的点是( )
A.A点B.B点C.C点D.D
4、(4分)如图,一棵大树在离地面9米高的处断裂,树顶落在距离树底部12米的处(米),则大树断裂之前的高度为( )
A.9米B.10米C.21米D.24米
5、(4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正确结论的个数是( )
A.1B.2C.1D.4
6、(4分)已知一次函数y=x﹣1的图象经过点(1,m),则m的值为( )
A.B.1C.-D.﹣1
7、(4分)如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是( )
A.16B.15C.14D.13
8、(4分) 如果点P(3﹣m,1)在第二象限,那么关于x的不等式(2﹣m)x+2>m的解集是( )
A.x>﹣1B.x<﹣1C.x>1D.x<1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连接DE,若DE=2.5 cm,AB=4 cm,则BC的长为_______cm.
10、(4分)二次函数的函数值自变量之间的部分对应值如下表:
此函数图象的对称轴为_____
11、(4分)如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y=上;将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是_____.
12、(4分)如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…依此类推,若正方形①的边长为64m,则正方形⑨的边长为________cm.
13、(4分)矩形、菱形和正方形的对角线都具有的性质是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC上的点,AE=CF,并且∠AED=∠CFD.
求证:(1)△AED≌△CFD;
(2)四边形ABCD是菱形.
15、(8分)已知,如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,F是BC延长线上的一点,且EF∥DC,(1)求证:四边形CDEF是平行四边形;(2)若EF=2cm,求AB的长.
16、(8分)如图,在平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为,,.
(1)画出将向上平移2个单位长度,再向左平移5个单位长度后得到的;
(2)画出将绕点按顺时针方向旋转90°得到的;
(3)在轴上存在一点,满足点到点与点的距离之和最小,请直接写出点的坐标.
17、(10分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,分别按下列要求画以格点为顶点三角形和平行四边形.
(1)三角形三边长为4,3,;
(2)平行四边形有一锐角为45°,且面积为1.
18、(10分)如图,一次函数的图象与轴、轴分别交于、两点,与反比例函数交于点,过点分别作轴、轴的垂线,垂足分别为点、.若,,.
(1)求点的坐标;
(2)求一次函数和反比例函数的表达式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;
20、(4分)如图,一根旗杆在离地面5 m处断裂,旗杆顶部落在离旗杆底部12 m处,旗杆断裂之前的高为____.
21、(4分)已知一次函数y=x+b的图象经过第一、二、三象限,写出一个符合条件的b的值为_____.
22、(4分)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为__.
23、(4分)在平行四边形ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么的取值范围是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平行四边形中,点分别是的中点.求证.
25、(10分)如图,在等腰梯形ABCD中,AB=DC,点M,N分别是AD,BC的中点,点E,F分别是BM,CM的中点. (1)求证:四边形MENF是菱形; (2)当四边形MENF是正方形时,求证:等腰梯形ABCD的高是底边BC的一半.
26、(12分)按要求作答
(1)解方程;(2)计算.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由等边三角形的性质可得,进而可得,又因为,结合等腰三角形的性质,易得的大小,进而可求出的度数.
【详解】
是等边三角形,
,,
四边形是正方形,
,,
,,
,
.
故选:.
本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出的度数,难度适中.
2、B
【解析】
根据中心对称图形的概念对各选项分析判断即可得解.
【详解】
、不是中心对称图形,故本选项不符合题意;
、是中心对称图形,故本选项符合题意;
、不是中心对称图形,故本选项不符合题意;
、不是中心对称图形,故本选项不符合题意.
故选:.
本题考查了中心对称图形的概念,解题关键在于中心对称图形是要寻找对称中心,旋转 180 度后两部分重合.
3、D
【解析】
根据点的坐标特征,可得答案.
【详解】
MN所在的直线是x轴,MN的垂直平分线是y轴,A在x轴的上方,y轴的左边,A点在第二象限内.
故选A.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
4、D
【解析】
根据勾股定理列式计算即可.
【详解】
由题意可得:,
AB+BC=15+9=1.
故选D.
本题考查勾股定理的应用,关键在于熟练掌握勾股定理的公式.
5、C
【解析】
根据正方形基本性质和相似三角形性质进行分析即可.
【详解】
①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;
②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=1.所以BG=1=6﹣1=GC;
③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;
④错误.
过F作FH⊥DC,
∵BC⊥DH,
∴FH∥GC,
∴△EFH∽△EGC,
∴
EF=DE=2,GF=1,
∴EG=5,
∴
∴S△FGC=S△GCE﹣S△FEC=
故选C.
考核知识点:相似三角形性质.
6、C
【解析】
把点(1,m)代入函数解析式,列出关于m的一元一次方程,通过解方程来求m的值.
【详解】
∵一次函数y=x﹣1的图象经过点(1,m),
∴-1=m,
解得m=-
故选:C
此题考查一次函数图象上点的坐标特征,解题关键在于把点代入解析式
7、B
【解析】
根据平行四边形性质得出AD=BC=6,AB=CD=5,OA=OC,AD∥BC,推出∠EAO=∠FCO,证△AEO≌△CFO,推出AE=CF,OE=OF=2,求出DE+CF=DE+AE=AD=6,即可求出答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC=6,AB=CD=5,OA=OC,AD∥BC,
∴∠EAO=∠FCO,
在△AEO和△CFO中,
,
∴△AEO≌△CFO(ASA),
∴AE=CF,OE=OF=2,
∴DE+CF=DE+AE=AD=6,
∴四边形EFCD的周长是EF+FC+CD+DE=2+2+6+5=1.
故选B.
本题考查平行四边形性质,全等三角形的性质和判定的应用,解题的关键是求出DE+CF的长和求出OF长.
8、B
【解析】
根据第二象限内点的坐标特征得3-m<0,解得m>3,
不等式(2-m)x+2>m化简为(2-m)x>m-2,
由m>3,得2-m<0,
所以x<=-1.
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、9
【解析】
根据题意先证△ABD≌△GBD,得出AB=BG,D为AG中点,再由E为AC中点,根据中位线的性质即可求解.
【详解】
∵BF平分∠ABC,∴∠ABD=∠GBD,
∵AG⊥BF,∴∠BDG=∠BDA,
又BD=BD,∴△ABD≌△GBD
∴BG=AB=4cm,AD=GD,
故D为AG中点,又E为AC中点
∴GC=2DE=5cm,
∴BC=BG+GC=9cm.
此题主要考查线段的长度求解,解题的关键是熟知全等三角形的判定与中位线的性质.
10、x=2.
【解析】
根据抛物线的对称性,x=0、x=4时的函数值相等,然后列式计算即可得解.
【详解】
∵x=0、x=4时的函数值都是−1,
∴此函数图象的对称轴为直线x==2,
即直线x=2.
故答案为:直线x=2.
此题考查二次函数的性质,解题关键在于利用其对称性求解.
11、1
【解析】
根据直线的关系式可以求出A、B的坐标,由正方形可以通过作辅助线,构造全等三角形,进而求出C、D的坐标,求出反比例函数的关系式,进而求出C点 平移后落在反比例函数图象上的点G的坐标,进而得出平移的距离.
【详解】
当x=0时,y=4,∴B(0,4),当y=0时,x=1,
∴A(1,0),
∴OA=1,OB=4,
∵ABCD是正方形,
∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,
过点D、C作DM⊥x轴,CN⊥y轴,垂足为M、N,
∴∠ABO=∠BCN=∠DAM,
∵∠AOB=∠BNC=∠AMD=90°,
∴△AOB≌△BNC≌△DMA (AAS),
∴OA=DM=BN=1,AM=OB=CN=4
∴OM=1+4=5,ON=4+1=5,
∴C(4,5),D(5,1),
把D(5,1)代入y=得:k=5,
∴y=,
当y=5时,x=1,
∴E(1,5),
点C向左平移到E时,平移距离为4﹣1=1,即:a=1,
故答案为:1.
考查反比例函数的图象和性质、正方形的性质、全等三角形的判定和性质以及平移的性质等知识,确定平移前后对应点C、E的坐标是解决问题的关键.
12、4
【解析】
第一个正方形的边长为64cm,则第二个正方形的边长为64×cm,第三个正方形的边长为64×()2cm,依此类推,通过找规律求解.
【详解】
根据题意:第一个正方形的边长为64cm;
第二个正方形的边长为:64×=32cm;
第三个正方形的边长为:64×()2cm,
…
此后,每一个正方形的边长是上一个正方形的边长的 ,
所以第9个正方形的边长为64×()9-1=4cm,
故答案为4
本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.
13、对角线互相平分
【解析】
先逐一分析出矩形、菱形、正方形的对角的性质,再综合考虑矩形、菱形、正方形对角线的共同性质.
【详解】
解:因为矩形的对角线互相平分且相等,菱形的对角线互相平分且垂直且平分每一组对角,正方形的对角线具有矩形和菱形所有的性质,所有矩形、菱形和正方形的对角线都具有的性质是对角线互相平分.
故答案为对角线互相平分.
本题主要考查了矩形、菱形、正方形的性质,解题的关键是熟知三者对角线的性质.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)证明见解析.
【解析】
分析:(1)由全等三角形的判定定理ASA证得结论;
(2)由“邻边相等的平行四边形为菱形”证得结论.
详解:(1)证明:∵四边形ABCD是平行四边形,
∴∠A=∠C.
在△AED与△CFD中,
,
∴△AED≌△CFD(ASA);
(2)由(1)知,△AED≌△CFD,则AD=CD.
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
点睛:考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.
15、(1)见解析;(2)4cm.
【解析】
(1)根据三角形中位线定理可得ED∥FC;结合已知条件EF∥DC,即可得结论;
(2)根据直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC.
【详解】
(1)证明:如图,∵D、E分别是AB、AC的中点,F是BC延长线上的一点,
∴ED是Rt△ABC的中位线,
∴ED∥FC.
又 EF∥DC,
∴四边形CDEF是平行四边形;
(2)解:由(1)知,四边形CDEF是平行四边形,则DC=EF=2cm.
∵点D是Rt△ABC斜边AB的中点,
∴DC= AB,
∴AB=2DC=4cm.
故答案为(1)见解析;(2)4cm.
本题考查平行四边形的判定与性质,直角三角形斜边上的中线.解题的关键是熟练掌握平行四边形的判定与性质以及直角三角形斜边上的中线等于斜边的一半.
16、(1)答案见解析;(2)答案见解析;(3).
【解析】
(1)先分别将A、B、C三点向上平移2个单位长度,再向左平移5个单位长度得到,然后连接、、即可;
(2)根据题意,先将边OC和OA绕点顺时针方向旋转90°得到、,然后连接即可;
(3)连接交x轴于点P,根据两点之间线段最短即可得出此时点到点与点的距离之和最小,然后利用待定系数法求出直线的解析式,从而求出点P 的坐标.
【详解】
解:(1)先分别将A、B、C三点向上平移2个单位长度,再向左平移5个单位长度得到,然后连接、、,如图所示,即为所求;
(2)先将边OC和OA绕点顺时针方向旋转90°得到、,然后连接,如图所示,即为所求;
(3)连接交x轴于点P,根据两点之间线段最短,即可得出此时点到点与点的距离之和最小,
由平面直角坐标系可知:点A的坐标为(4,3),点的坐标为(3,-4)
设直线的解析式为y=kx+b
将A、的坐标代入,得
解得:
∴直线的解析式为y=7x-25
将y=0代入,得
∴点P的坐标为.
此题考查的是图形的平移、旋转、两点之间线段最短的应用和求一次函数的解析式,掌握图形的平移、旋转的画法、两点之间线段最短和利用待定系数法求一次函数的解析式是解决此题的关键.
17、(1)见解析;(2)见解析.
【解析】
分析:(1)4在网格线上,3是直角边为3的直角三角形的斜边,是直角边分别为1和3的直角三角形的斜边;(2)先构造一个直角边为2的等腰直角三角形,以此为基础再构造平行四边形.
详解:(1)图(1)即为所求;
(2)图(2)即为所求.
点睛:本题考查了勾股定理,在格点中,可结合网格中的直角构造直角三角形,一般有理数可用网格线表示,无理数可表示为直角三角形的斜边,勾股定理确定它的两条直角边.
18、(1);(2).
【解析】
(1)利用,可以就可以求出A点的坐标
(2)利用A,B的坐标求出一次函数的解析式,然后利用C点坐标求出反比例函数的表达式。
【详解】
解:(1),
而,
,
点坐标为;
(2)点坐标为,
把、代入得,即得,
一次函数解析式为;
把代入得,
点坐标为,
,
反比例函数解析式为
此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,数形结合思想是数学中重要的思想方法,做题时注意灵活运用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(-1,2)
【解析】
关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
【详解】
关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
故Q坐标为(-1,2).
故答案为:(-1,2).
此题考查的是关于y轴对称的两点坐标的特点,掌握两点关于坐标轴或原点对称坐标特点是解决此题的关键.
20、18m
【解析】
旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,
所以折断的旗杆与地面形成了一个直角三角形.
根据勾股定理,折断的旗杆为=13m,
所以旗杆折断之前高度为13m+5m=18m.
故答案为18m.
21、2
【解析】
图象经过一、三象限,还过第二象限,所以直线与y轴的交点在正半轴上,则b>2.
【详解】
解:∵图象经过第一、二、三象限,
∴直线与y轴的交点在正半轴上,则b>2.
∴符合条件的b的值大于2即可.
∴b=2,
故答案为2.
考查了一次函数图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数及常数是大于2或是小于2.
22、50°.
【解析】
解:∵四边形ABCD是平行四边形,∴DC∥AB,
∴∠C=∠ABF.
又∵∠C=40°,∴∠ABF=40°.
∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.
故答案为50°.
本题考查平行四边形的性质.
23、3<x<1
【解析】
根据平行四边形的性质易知OA=7,OB=4,根据三角形三边关系确定范围.
【详解】
∵ABCD是平行四边形,AC=14,BD=8,
∴OA=AC=7,OB=BD=4,
∴7−4<x<7+4,即3<x<1.
故答案为:3<x<1.
此题考查了平行四边形的性质及三角形三边关系定理,有关“对角线范围”的题,应联系“三角形两边之和、差与第三边关系”知识点来解决.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
根据平行四边形的性质和已知可证AE=CF,∠BAE=∠DCF,AB=CD,故根据SAS可证△ABE≌△DCF.
【详解】
证明:四边形是平行四边形,
,
点分别是的中点,
,
,
在和中,,
.
本题考查了平行四边形的判定和全等三角形的判定.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
25、见解析
【解析】
(1)利用等腰梯形的性质证明,利用全等三角形性质及中点概念,中位线的性质证明四边形的四边相等得结论.(2)连接,利用三线合一证明是等腰梯形的高,再利用正方形与直角三角形的性质可得结论.
【详解】
(1)四边形为等腰梯形,
所以,
为中点,.
,
.
为、中点,,,
所以:,
为的中点,为中点
,
∴四边形是菱形.
(2)连结MN, ∵BM=CM,BN=CN,
∴MN⊥BC, ∵AD∥BC, ∴MN⊥AD,
∴MN是梯形ABCD的高,
又∵四边形MENF是正方形,
∴△BMC为直角三角形,
又∵N是BC的中点,,
即等腰梯形ABCD的高是底边BC的一半.
本题考查的是等腰梯形的性质,等腰直角三角形的性质,三角形的全等的判定,菱形的判定,正方形的性质等,掌握以上知识点是解题关键.
26、 (1) (2) 3
【解析】
(1)本题是一元二次方程,解答该方程可选择直接用公式法解答.
(2)本题为实数的运算,首先把两个乘法先运算出来,第一个乘法式可以由平方差公式计算,第二个乘法可先把根式化为最简根式再进行约分,最后加减时,注意合并同类根式.
【详解】
(1)解:原方程中a=-1,b=-3,c=2
首先用根的判别式判断该二元一次方程是否有解
得:,所以该方程有解
由公式可得:
即解得
(2)原式=
故答案为(1) (2) 3
本题考察了一元二次方程的解法和实数的混合运算,需要注意的是一元二次方程解答直接首先用根的判别式判断是否有解,在实数运算过程中,先算乘除与乘方后算加减,有括号的先算括号里面的.涉及到根式运算时,务必要化简根式与合并同类根式
题号
一
二
三
四
五
总分
得分
批阅人
…
0
1
4
…
…
4
…
2024年河北省保定市唐县九上数学开学达标检测模拟试题【含答案】: 这是一份2024年河北省保定市唐县九上数学开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河北省石家庄市八校联考数学九上开学达标检测模拟试题【含答案】: 这是一份2024-2025学年河北省石家庄市八校联考数学九上开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,四象限;,解答题等内容,欢迎下载使用。
2024-2025学年河北省高阳县联考数学九上开学达标检测试题【含答案】: 这是一份2024-2025学年河北省高阳县联考数学九上开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。