![河北省保定市乐凯中学2024年数学九上开学统考试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16273717/0-1729480585981/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河北省保定市乐凯中学2024年数学九上开学统考试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16273717/0-1729480586050/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河北省保定市乐凯中学2024年数学九上开学统考试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16273717/0-1729480586078/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
河北省保定市乐凯中学2024年数学九上开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法:①“掷一枚质地均匀的硬币,朝上一面可能是正面”;②“从一副普通扑克牌中任意抽取一张,点数一定是3”( )
A.只有①正确B.只有②正确C.①②都正确D.①②都错误
2、(4分)以下命题,正确的是( ).
A.对角线相等的菱形是正方形
B.对角线相等的平行四边形是正方形
C.对角线互相垂直的平行四边形是正方形
D.对角线互相垂直平分的四边形是正方形
3、(4分)如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距高是;③AF=CF;④△ABF 的面积为其中一定成立的有( )个.
A.1B.2C.3D.4
4、(4分)如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是( )
A.16B.14C.26D.24
5、(4分)若代数式在实数范围内有意义,则x的取值范围是( )
A.x<3B.x≤3C.x>3D.x≥3
6、(4分)下列各点中,不在反比例函数图象上的点是( )
A.B.C.D.
7、(4分)已知反比例函数图像经过点(2,—3),则下列点中必在此函数图像上的是( )
A.(2, 3)B.(1, 6)C.(—1, 6)D.(—2,—3)
8、(4分)若a<b,则下列结论不一定成立的是( )
A.B.C. D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,以点O为圆心的三个同心圆把以OA1为半径的大圆的面积四等分,若OA1=R,则OA4:OA3:OA2:OA1=______________,若有()个同心圆把这个大圆等分,则最小的圆的半径是=_______.
10、(4分)如图,直线y=-x+m与y=nx+4n的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的解集为___________.
11、(4分)如图在△ABC中,AH⊥BC于点H,在AH上取一点D,连接DC,使DA=DC,且∠ADC=2∠DBC,若DH=2,BC=6,则AB=_________________。
12、(4分)如图,在四边形ABCD中,AD//BC,E、F分别是AB、CD的中点,若AD=3,BC=5,则EF=____________.
13、(4分)如图,正方形和正方形中,点在上,,,是的中点,那么的长是__________(用含、的代数式表示).
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值:(﹣x﹣1)÷,其中x=﹣.
15、(8分)如图,在菱形ABCD中,AD∥x轴,点A的坐标为(0,4),点B的坐标为(3,0).CD边所在直线y1=mx+n与x轴交于点C,与双曲线y2= (x<0)交于点D.
(1)求直线CD对应的函数表达式及k的值.
(2)把菱形ABCD沿y轴的正方向平移多少个单位后,点C落在双曲线y2= (x<0)上?
(3)直接写出使y1>y2的自变量x的取值范围.
16、(8分)如图,在平行四边形中,的平分线交于点,的平分线交于点.
(1)若,,求的长.
(2)求证:四边形是平行四边形.
17、(10分)分解因式:(1)x2(x﹣y)+(y﹣x) ;(2)﹣4a2x+12ax﹣9x
18、(10分)(1)计算:
(2)解方程:(1-2x)2=x2-6x+9
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在矩形中,,对角线,相交于点,垂直平分于点,则的长为__________.
20、(4分)如图,四边形是正方形,延长到,使,则__________°.
21、(4分)将一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度,所得直线的解析式为_____.
22、(4分)若分式值为0,则的值为__________.
23、(4分)如图,△ACE是以ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,),则D点的坐标是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)按要求完成下列尺规作图(不写作法,保留作图痕迹)
(1)如图①,点A绕某点M旋转后,A的对应点为,求作点M.
(2)如图②,点B绕某点N顺时针旋转后,B的对应点为,求作点N.
25、(10分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地。两车同时出发,匀速行驶。图2是客车、货车离C站的路程y ,y (千米)与行驶时间x(小时)之间的函数关系图象。
(1)填空:A,B两地相距___千米;货车的速度是___千米/时。
(2)求两小时后,货车离C站的路程y 与行驶时间x之间的函数表达式;
(3)客、货两车何时距离不大于30km?
26、(12分)为了调查甲,乙两台包装机分装标准质量为奶粉的情况,质检员进行了抽样调查,过程如下.请补全表一、表二中的空,并回答提出的问题.
收集数据:
从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:)如下:
甲:394,400,408,406,410,409,400,400,393,395
乙:402,404,396,403,402,405,397,399,402,398
整理数据:
表一
分析数据:
表二
得出结论:
包装机分装情况比较好的是______(填甲或乙),说明你的理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据不可能事件,随机事件,必然事件发生的概率以及概率的意义找到正确选项即可.
【详解】
掷一枚质地均匀的硬币,朝上一面可能是正面,可能是反面,所以①正确;
从一副普通扑克牌中任意抽取一张,点数不一定是3,所以②错误,
故选A.
本题考查了随机事件与确定事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件:(1)必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件.(2)不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2、A
【解析】
利用正方形的判定方法分别判断后即可确定正确的选项.
【详解】
A、对角线相等的菱形是正方形,正确,是真命题;
B、对角线相等的平行四边形是矩形,故错误,是假命题;
C、对角线互相垂直的平行四边形是菱形,故错误,是假命题;
D、对角线互相垂直平分的四边形是菱形,故错误,是假命题,
故选:A.
考查了命题与定理的知识,解题的关键是了解正方形的判定方法.
3、C
【解析】
根据菱形的性质,逐个证明即可.
【详解】
① 四边形ABCD为菱形
AB=BC
∠DAB=60°
△ABF≌△CBF
因此 ①正确.
②过E作EM垂直于AB的延长线于点M
CE=2
BE=4
∠DAB=60°
因此点E到AB的距高为
故②正确.
③根据①证明可得△ABF≌△CBF
AF=CF
故③正确.
④ 和 的高相等
所以
△ABF≌△CBF
故④错误.
故有3个正确,选C.
本题主要考查菱形的性质,关键在于证明三角形全等,是一道综合形比较强的题目.
4、C
【解析】
由AD//BC可知∠ADE=∠DEC,根据∠ADE=∠EDC得∠DEC=∠EDC,所以DC=EC=5,根据AB=CD,AD=BC即可求出周长.
【详解】
∵AD//BC,
∴∠ADE=∠DEC,
∵DE平分∠ADC,
∴∠ADE=∠EDC,
∴CE=CD=8-3=5,
∴▱ABCD的周长是(8+5)2=26,
故选C.
本题考查平行四边形性质,熟练掌握平行四边形的性质是解题关键.
5、B
【解析】
根据二次根式的被开方数是非负数列出不等式,解不等式即可.
【详解】
由题意得,3﹣x≥0,解得,x≤3,故选:B.
本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.
6、A
【解析】
直接利用反比例函数图象上点的坐标特点进而得出答案.
【详解】
解:∵,
∴xy=12,
A.(3,−4),此时xy=3×(−4)=−12,符合题意;
B、(3,4),此时xy=3×4=12,不合题意;
C、(2,6),此时xy=2×6=12,不合题意;
D、(−2,−6),此时xy=−2×(−6)=12,不合题意;
故选:A.
此题主要考查了反比例函数图象上点的坐标特征,属于基础题.
7、C
【解析】
先根据反比例函数经过点(2,-3)求出k的值,再对各选项进行逐一分析即可.
【详解】
∵反比例函数经过点(2,-3),
∴k=2×-3=-1.
A、∵2×3=1≠-1,∴此点不在函数图象上,故本选项错误;
B、∵1×1=1≠-1,∴此点不在函数图象上,故本选项错误;
C、∵(-1)×1=-1,∴此点在函数图象上,故本选项正确;
D、∵(-2)×(-3)=1≠-1,∴此点不在函数图象上,故本选项错误.
故选C.
本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
8、D
【解析】
由不等式的性质进行计算并作出正确的判断.
【详解】
A. 在不等式aB. 在不等式aC. 在不等式aD. 当a=−5,b=1时,不等式a2
本题考查不等式的性质,在利用不等式的性质时需注意,在给不等式的两边同时乘以或除以某数(或式)时,需判断这个数(或式)的正负,从而判断改不改变不等号的方向.解决本题时还需注意,要判断一个结论错误,只需要举一个反例即可.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据每个圆与大圆的面积关系,即可求出每个圆的半径长,即可得到结论.
【详解】
∵π•OA42=π•OA12,
∴O A42=OA12,
∴O A4=OA1;
∵π•OA32=π•OA12,
∴O A32=OA12,
∴O A3=OA1;
∵π•OA22=π•OA12,
∴O A22=OA12,
∴O A2=OA1;
∵OA1=R
因此这三个圆的半径为:O A2=R,O A3=R,O A4=R.
∴OA4:OA3:OA2:OA1=
由此可得,有()个同心圆把这个大圆等分,则最小的圆的半径是=
故答案为:(1);(2).
本题考查了算术平方根的定义和性质;弄清每个圆与大圆的面积关系是解题的关键.
10、
【解析】
令时,解得,则与x轴的交点为(﹣4,0),再根据图象分析即可判断.
【详解】
令时,解得,故与x轴的交点为(﹣4,0).
由函数图象可得,当时,函数的图象在x轴上方,且其函数图象在函数图象的下方,故解集是.
故答案为: .
本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.
11、
【解析】
如图,过点B作BE∥DH,并在BE上取BE=2DH,连接ED,EC.并取BE的中点K,连接DK,根据垂直的定义得到∠DHC=90°,由平行线的性质得到∠EBC=90°.由线段垂直平分线的性质得到BK=DH.推出四边形DKBH为矩形,得到DK⊥BE,根据等腰三角形的性质得到DE=DB,∠EDB=2∠KDB,通过△EDC≌△BDA,得到AB=CE,根据勾股定理得到,于是得到结论.
【详解】
解:如图,过点B作BE∥DH,并在BE上取BE=2DH,连接ED,EC.并取BE的中点K,连接DK,
∵DH⊥BC于H,
∴∠DHC=90°,
∵BE∥DH,
∴∠EBC=90°,
∵∠EBC=90°,
∵K为BE的中点,BE=2DH,
∴BK=DH.
∵BK∥DH,
∴四边形DKBH为矩形,DK∥BH,
∴DK⊥BE,∠KDB=∠DBC,
∴DE=DB,∠EDB=2∠KDB,
∵∠ADC=2∠DBC,
∴∠EDB=∠ADC,
∴∠EDB+∠EDA=∠ADC+∠EDA,即∠EDC=∠BDA,
在△EDC、△BDA中,
,
∴△EDC≌△BDA,
∴AB=CE,
∴,
∴AB=.
本题考查了全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的判定与性质,矩形的判定与性质,勾股定理的运用.关键是根据已知条件构造全等三角形.
12、1
【解析】
由题意可知EF为梯形ABCD的中位线,根据梯形中位线等于上底加下底的和的一半可得答案.
【详解】
∵四边形ABCD中,AD//BC
∴四边形ABCD为梯形,
∵E、F分别是AB、CD的中点
∴EF是梯形ABCD的中位线
∴EF===1
故答案为:1.
本题考查梯形的中位线,熟练掌握梯形中位线的性质是解题的关键.
13、
【解析】
连接AC、CF,根据正方形的性质得到∠ACF=90°,根据勾股定理求出AF的长,根据直角三角形中,斜边上的中线等于斜边的一半计算即可.
【详解】
解:连接AC、CF,
在正方形ABCD和正方形CEFG中,
∠ACG=45°,∠FCG=45°,
∴∠ACF=90°,
∵BC=a,CE=b,
,
由勾股定理得: ,
∵∠ACF=90°,H是AF的中点,
∴CH=AF=.
本题考查的是直角三角形的性质、勾股定理的应用、正方形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
原式=-(x2+x-2),
当时,原式=
15、(1);k=-1.(2)把菱形ABCD沿y轴的正方向平移10个单位后,点C落在双曲线上;(3)x<-5.
【解析】
试题分析:(1)根据勾股定理求得AB的长,进而求得D、C的坐标,然后根据待定系数法即可求得直线CD的函数表达式及k的值;
(2)把x=-2代入y2=-(x<0)得,y=-=10,即可求得平移的距离;
(3)根据函数的图象即可求得使y1>y2的自变量x的取值范围.
试题解析:(1)∵点A的坐标为(0,4),点B的坐标为(3,0),
∴AB==5,
∵四边形ABCD是菱形,
∴AD=BC=AB=5,
∴D(-5,4),C(-2,0).
∴,解得
∴直线CD的函数表达式为y1=-x-,
∵D点在反比例函数的图象上,
∴4=,
∴k=-1.
(2)∵C(-2,0),
把x=-2代入y2=-(x<0)得,y=-=10,
∴把菱形ABCD沿y轴的正方向平移10个单位后,点C落在双曲线y2=(x<0)上.
(3)由图象可知:当x<-5时,y1>y2.
16、(1);(2)证明见解析.
【解析】
(1)根据等腰三角形的性质即可求解;
(2)根据角平分线的性质及平行线的判定得到,再根据即可证明.
【详解】
(1)解:∵四边形为平形四边形
∴
∵平分
∴
∴
∴,
∴
(2)证明:∵四边形为平行四边形
∴
∵平分
又∴
∴
∴
∴四边形为平行四边形
此题主要考查平行四边形的性质与判定,解题的关键是熟知平行四边形的性质定理.
17、(1);(1)﹣x(1a﹣3)1.
【解析】
(1)先提公因式法,再运用平方差公式,即可得到结果;
(1)先提公因式法,再运用完全平方公式,即可得到结果.
【详解】
解:(1)x1(x-y)+(y-x)=x1(x-y)-(x-y)=(x-y)(x+1)(x-1),
(1)-4a1x+11ax-9x=-x(4a1-11a+9)=-x(1a-3)1.
本题主要考查了提公因式法以及公式法的综合运用,解题时注意:有公因式时,先提出公因式,再运用公式法进行因式分解.
18、(1)- (2)-2、
【解析】
(1)根据二次根式的运算法则进行运算;(2)运用开方知识解方程.
【详解】
(1)解:原式=3﹣15×+×
=3+
=;
(2)解:原方程可化为:
本题考核知识点:二次根式运算,解一元二次方程. 解题关键点:掌握二次根式运算法则和开方知识解方程.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
结合题意,由矩形的性质和线段垂直平分线的性质可得AB=AO=OB=OD=4,根据勾股定理可求AD的长.
【详解】
∵四边形ABCD是矩形,
∴AO=BO=CO=DO,
∵AE垂直平分OB于点E,
∴AO=AB=4,
∴AO=OB=AB=4,
∴BD=8,
在Rt△ABD中,AD==.
故答案为:.
本题考查矩形的性质和线段垂直平分线的性质,解题的关键是掌握矩形的性质和线段垂直平分线的性质.
20、22.5
【解析】
根据正方形的性质求出∠CAB=∠ACB=45°,再根据AC=AE求出∠ACE=67.5°,由此即可求出答案.
【详解】
∵四边形ABCD是正方形,
∴∠DAB=∠DCB=90°,
∵AC是对角线,
∴∠CAB=∠ACB=45°,
∵AC=AE,
∴∠ACE=67.5°,
∴∠BCE=∠ACE-∠ACB=22.5°,
故答案为:22.5°.
此题考查正方形的性质,等腰三角形的性质,三角形的内角和性质,是一道较为基础的题型.
21、y=2x
【解析】
根据上加下减,左加右减的法则可得出答案
【详解】
一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度变为:
y=2x﹣3+3=2x
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
22、-1
【解析】
根据分式值为0的条件进行求解即可.
【详解】
由题意得,x+1=0,
解得x=-1,
故答案为:-1.
本题考查了分式值为0的条件,熟练掌握分式值为0时,分子为0且分母不为0是解题的关键.
23、(3,0)
【解析】
∵点C与点E关于x轴对称,E点的坐标是(7,),
∴C的坐标为(7,).
∴CH=,CE=,
∵△ACE是以ABCD的对角线AC为边的等边三角形,
∴AC=.
∴AH=1.
∵OH=7,
∴AO=DH=2.
∴OD=3.
∴D点的坐标是(3,0).
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2)见解析
【解析】
(1)连结AA′,作AA′的垂直平分线与AA′的交点为M点;
(2)连结BB′,作BB′的垂直平分线得到BB′的中点,然后以BB′为直径作圆,则圆与BB′的垂直平分线的交点即为N点.
【详解】
解:如图①,点M即为所求;
如图②,点N即为所求.
① ②
考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.关键是熟练掌握线段垂直平分线的作法.
25、(1)420,30;(2)y=30x−60;(3)当客车行驶的时间x, ⩽x⩽5时,客、货两车相距不大于30千米.
【解析】
(1)根据图象中的数据即可得到A,B两地的距离;
(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y与行驶时间x之间的函数关系式;
(3)根据题意可以分相遇前和相遇后两种情况进行解答.
【详解】
(1)由题意和图象可得,
A,B两地相距:360+60=420千米,
货车的速度=60÷2=30千米/小时,
故答案为:420,30;
(2)设两小时后,货车离C站的路程y与行驶时间x之间的函数关系式为y=kx+b,
由图象可得,货车的速度为:60÷2=30千米/时,
则点P的横坐标为:2+360÷30=14,
∴点P的坐标为(14,360),
,得 ,
即两小时后,货车离C站的路程y与行驶时间x之间的函数关系式为y=30x−60;
(3)由题意可得,
相遇前两车相距150千米用的时间为:(420−30)÷(60÷2+360÷6)= (小时),
相遇后两车相距150千米用的时间为:+(30×2)÷(60÷2+360÷6)=5(小时),
当客车行驶的时间x, ⩽x⩽5时,客、货两车相距不大于30千米。
此题考查一次函数的应用,解题关键在于看懂图中数据
26、整理数据:3,1,5;分析数据:400,402;得出结论:乙,理由详见解析.
【解析】
整理数据:根据所给的数据填写表格一即可;分析数据:根据中位数、众数的定义求解即可;得出结论:结合表二中的数据解答即可.
【详解】
整理数据:
表一中,
甲组:393≤x<396的有3个,405≤x<408的有1个;
乙组:402≤x<405的有5个;
故答案为:3,1,5;
分析数据:
表二中,
甲组:把10个数据按照从小到大顺序排列为:393,394,395,400,400,400,406,408,409,410,
中位数为中间两个数据的平均数==400,
乙组:出现次数最多的数据是402,
∴众数是402;
故答案为:400,402;
得出结论:
包装机分装情况比较好的是乙;理由如下:
由表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,
所以包装机分装情况比较好的是乙.
故答案为:乙(答案不唯一,合理即可).
本题考查了众数、中位数以及方差,掌握众数、中位数以及方差的定义及数据的整理是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
频数种类
质量()
甲
乙
____________
0
0
3
3
1
0
____________
____________
1
3
0
种类
甲
乙
平均数
401.5
400.8
中位数
____________
402
众数
400
____________
方差
36.85
8.56
河北省保定市安国市2024-2025学年数学九上开学统考试题【含答案】: 这是一份河北省保定市安国市2024-2025学年数学九上开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省保定市乐凯中学2023-2024学年九上数学期末复习检测试题含答案: 这是一份河北省保定市乐凯中学2023-2024学年九上数学期末复习检测试题含答案,共6页。试卷主要包含了下列事件中是必然事件是,解方程,选择最适当的方法是,如图,点A是反比例函数y=等内容,欢迎下载使用。
河北省保定市竞秀区乐凯中学2023-2024学年九上数学期末检测模拟试题含答案: 这是一份河北省保定市竞秀区乐凯中学2023-2024学年九上数学期末检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,关于抛物线,下列说法错误的是等内容,欢迎下载使用。