河北省沧州市2024-2025学年九上数学开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)4的平方根是( )
A.4B.2C.-2D.±2
2、(4分)若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则( )
A.a<b<c<dB.b<a<d<cC.a<d<c<bD.c<a<d<b
3、(4分)当a满足条件( )时,式子在实数范围内有意义.
A.a<−3B.a≤−3C.a>−3D.a≥−3
4、(4分)下列命题中,逆命题是真命题的是( )
A.直角三角形的两锐角互余
B.对顶角相等
C.若两直线垂直,则两直线有交点
D.若x=1,则x2=1
5、(4分)将直线y=2x-3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )
A.B.C.D.
6、(4分)若分式有意义,则x应满足的条件是( )
A.x≠0B.x=2C.x>2D.x≠2
7、(4分)下列说法不能判断是正方形的是( )
A.对角线互相垂直且相等的平行四边形B.对角线互相垂直的矩形
C.对角线相等的菱形D.对角线互相垂直平分的四边形
8、(4分)已知a>b,且a≠0,b≠0,a+b≠0,则函数y=ax+b与在同一坐标系中的图象不可能是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将直线y=2x﹣2向右平移1个单位长度后所得直线的解析式为y=_____.
10、(4分)如图,平行四边形ABCD中,,,,则平行四边形ABCD的面积为______.
11、(4分)函数y=kx(k0)的图象上有两个点A1(,),A2(,),当<时,>,写出一个满足条件的函数解析式______________.
12、(4分)已知直线y=kx+b和直线y=-3x平行,且过点(0,-3),则此直线与x轴的交点坐标为________.
13、(4分)当x=______时,分式的值是1.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,AB=AC,BC=10,CD⊥AB,垂足为D,CD=1.求AC的长.
15、(8分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了“二十四节气之旅”项目,并开展了相关知识竞赛.该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查.
收集数据如下:
七年级:
八年级:
整理数据如下:
分析数据如下:
根据以上信息,回答下列问题:
(1)a=______,b=______;
(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性);
(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有_____人.
16、(8分)如图,在四边形ABCD中,AD∥BC,CA平分∠DCB,DB平分∠ADC
(1)求证:四边形ABCD是菱形;
(2)若AC=8,BD=6,求点D到AB的距离
17、(10分)如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.
(1)如图,当点E在线段BC上时,∠BDF=α.
①按要求补全图形;
②∠EBF=______________(用含α的式子表示);
③判断线段 BF,CF,DF之间的数量关系,并证明.
(2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.
18、(10分)如图,请在下列四个论断中选出两个作为条件,推出四边形ABCD是平行四边形,并予以证明(写出一种即可).
①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.
已知:在四边形ABCD中,____________.
求证:四边形ABCD是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)四边形的外角和等于 .
20、(4分)如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为_____m.
21、(4分)若一组数据1,3,,5,4,6的平均数是4,则这组数据的中位数是__________.
22、(4分)距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足: (其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.
23、(4分)已知边长为的正三角形,两顶点分别在平面直角坐标系的轴、轴的正半轴上滑动,点C在第一象限,连结OC,则OC的长的最大值是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)化简分式:.
25、(10分)某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕着矩形ABCD(AB<BC)的对角线交点O旋转(如图①→②→③),图中M、N分别为直角三角板的直角边与矩形ABCD的边CD、BC的交点.
(1)该学习小组中一名成员意外地发现:在图①(三角板的一直角边与OD重合)中,BN1=CD1+CN1;在图③(三角板的一直角边与OC重合)中,CN1=BN1+CD1.请你对这名成员在图①和图③中发现的结论选择其一说明理由.
(1)试探究图②中BN、CN、CM、DM这四条线段之间的关系,写出你的结论,并说明理由.
26、(12分)如图,在平面直角坐标系中,直线y=x和y=﹣2x+6交于点A.
(1)求点A的坐标;
(2)若点C的坐标为(1,0),连接AC,求△AOC的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
∵,
∴4的平方根是,
故选D.
2、B
【解析】
分别求出a、b、c、d的值,然后进行比较大小进行排序即可.
【详解】
解:a=﹣0.32=﹣0.09,
b=﹣3﹣2=﹣,
c=(﹣)﹣2=9,
d=(﹣)0=1.
故b<a<d<c.
故选B.
本题考查了幂运算法则,准确计算是解题的关键.
3、D
【解析】
根据二次根式有意义的条件是被开方数大于等于0,即可求得答案.
【详解】
解:根据题意知,要使在实数范围内有意义.
则,
解得:,
故选:D.
本题主要考查二次根式的意义,掌握二次根式中被开方数为非负数是解题的关键.
4、A
【解析】
试题分析:交换原命题的题设与结论得到四个命题的逆命题,然后分别利用直角三角形的判定、对顶角的定义、两直线垂直的定义和平方根的定义对四个逆命题的真假进行判断.
解:A、逆命题为有两角互余的三角形为直角三角形,此逆命题为真命题,所以A选项正确;
B、逆命题为相等的角为对顶角,此逆命题为假命题,所以B选项错误;
C、逆命题为两直线有交点,则两直线垂直,此逆命题为假命题,所以C选项错误;
D、逆命题为若x2=1,则x=1,此逆命题为假命题,所以D选项错误.
故选A.
5、B
【解析】
根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.
【详解】
y=2(x-2)-3+3=2x-1.
化简,得
y=2x-1,
故选B.
本题考查了一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键.
6、D
【解析】
本题主要考查分式有意义的条件:分母不能为1.
【详解】
解:由代数式有意义可知:x﹣2≠1,
∴x≠2,
故选:D.
本题考查的是分式有意义的条件,当分母不为1时,分式有意义.
7、D
【解析】
正方形是特殊的矩形和菱形,要判断是正方形,选项中必须要有1个矩形的特殊条件和1个菱形的特殊条件.
【详解】
A中,对角线相互垂直的平行四边形可判断为菱形,又有对角线相等,可得正方形;
B中对角线相互垂直的矩形,可得正方形;
C中对角线相等的菱形,可得正方形;
D中,对角线相互垂直平分,仅可推导出菱形,不正确
故选:D
本题考查证正方形的条件,常见思路为:
(1)先证四边形是平行四边形;
(2)再添加一个菱形特有的条件;
(3)再添加一个矩形特有的条件
8、B
【解析】
试题分析:根据两函数图象所过的象限进行逐一分析,再进行选择即可.
解:A、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数的图象可知,a+b>0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;
B、由函数y=ax+b过二、三、四象限可知,a<0,b<0;由函数的图象可知,a+b>0,两结论相矛盾,故不可能成立;
C、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;
D、由函数y=ax+b过一、三、四象限可知,a<0,b<0;由函数的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;
故选B.
考点:反比例函数的图象;一次函数的图象.
点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2x﹣4
【解析】
试题解析:从原直线上找一点(1,0),向右平移一个单位长度为(2,0),
它在新直线上,可设新直线的解析式为:,代入得
故所得直线的解析式为:
故答案为:
10、10
【解析】
从A点做底边BC的垂线AE,在三角形ABE中30度角所对的直角边等于斜边AB的一半,所以AE=2,同时AE也是平行四边形ABCD的高,所以平行四边形的面积等于5x2=10.
【详解】
作AE⊥BC,
因为
所以,AE=AB=×4 =2.
所以,平行四边形的面积=BC×AE=5x2=10.
故答案为10
本题考核知识点:直角三角形. 解题关键点:熟记含有30〬角的直角三角形的性质.
11、y=-x(k<0即可)
【解析】
根据A1(x1,y1),A2(x2,y2)满足x1<x2时,y1>y2判断出函数图象的增减性即可.
【详解】
解:∵A1(x1,y1),A2(x2,y2)满足x1<x2时,y1>y2,
∴函数y=kx(k≠0)满足k<0
∴y=-x(k<0即可);
故答案为:y=-x(k<0即可).
本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
12、 (−1,0).
【解析】
先根据直线平行的问题得到k=-3,再把(0,-3)代入y=-3x+b求出b,从而得到直线解析式,然后计算函数值为0所对应的自变量的值即可得到直线与x轴的交点坐标.
【详解】
∵直线y=kx+b和直线y=−3x平行,
∴k=−3,
把(0,−3)代入y=−3x+b得b=−3,
∴直线解析式为y=−3x−3,
当y=0时,−3x−3=0,解得x=−1,
∴直线y=−3x−3与x轴的交点坐标为(−1,0).
故答案为(−1,0).
此题考查两条直线相交或平行问题,把已知点代入解析式是解题关键
13、1
【解析】
直接利用分式的值为零则分子为零进而得出答案.
【详解】
∵分式的值是1,
∴x=1.
故答案为:1.
此题主要考查了分式的值为零的条件,正确把握分式的性质是解题关键.
三、解答题(本大题共5个小题,共48分)
14、AC=
【解析】
根据勾股定理求出BD,设AC=x,得到AD=x﹣6,根据勾股定理列方程,解方程得到答案.
【详解】
解:∵CD⊥AB,
∴∠ADC=∠BDC=90°,
在Rt△BCD中,BD==6,
设AC=AB=x,则AD=x﹣6,
在Rt△ACD中,AC2=AD2+CD2,即x2=(x﹣6)2+12,
解得,x=,即AC=.
本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运用.
15、 (1)8,88.1; (2)你认为 八 年级知识竞赛的总体成绩较好,理由1:理由2:见解析;或者你认为 七 年级知识竞赛的总体成绩较好,理由1: 理由2: 见解析; (答案不唯一,合理即可);(3)460.
【解析】
(1)从调查的七年级的人数20减去前几组的人数即可,将八年级的20名学生的成绩排序后找到第10、11个数的平均数即是八年级的中位数,
(2)从中位数、众数、方差进行分析,调查结论,
(3)用各个年级的总人数乘以样本中优秀人数所占的比即可.
【详解】
(1) a=20-1-10-1=8,b=(88+89)÷2=88.1
故答案为:8,88.1.
(2)你认为 八 年级知识竞赛的总体成绩较好
理由1:八年级成绩的中位数较高;
理由2:八年级与七年级成绩的平均数接近且八年级方差较低,成绩更稳定.
或者
你认为 七 年级知识竞赛的总体成绩较好,
理由1:七年级的平均成绩较高;
理由2:低分段人数较少。 (答案不唯一,合理即可)
(3) 七年级优秀人数为:400×=180人,八年级优秀人数为:400×=280人,
180+280=460人.
考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.
16、(1)见解析;(2).
【解析】
(1)由平行线的性质和角平分线的性质可得AD=BC,且AD∥BC,可证四边形ABCD是平行四边形,且AD=CD,可证四边形ABCD是菱形;
(2)由勾股定理可求AB的长,由面积法可求点D到AB的距离.
【详解】
证明:(1)∵CA平分∠DCB,DB平分∠ADC
∴∠ADB=∠CDB,∠ACD=∠ACB
∵AD∥BC
∴∠DAC=∠ACB=∠ACD,∠ADB=∠DBC=∠CDB
∴AD=CD,BC=CD
∴AD=BC,且AD∥BC
∴四边形ABCD是平行四边形,且AD=CD
∴四边形ABCD是菱形
(2)如图,过点D作DE⊥AB,
∵四边形ABCD是菱形
∴AO=CO=4,BO=DO=3,AC⊥BD
∴AB===5
∵S△ABD=AB×DE=×DB×AO
∴5DE=6×4
∴DE=
本题考查了菱形的判定和性质,角平分线的性质,勾股定理,熟练运用菱形的性质是本题的关键.
17、(1)①详见解析;②45°-α;③,详见解析;(2),或,或
【解析】
(1)①由题意补全图形即可;
②由正方形的性质得出,由三角形的外角性质得出,由直角三角形的性质得出即可;
③在DF上截取DM=BF,连接CM,证明△CDM≌△CBF,得出CM=CF, ∠DCM=∠BCF,得出MF=即可得出结论;
(2)分三种情况:①当点E在线段BC上时,DF=BF+,理由同(1)③;
②当点E在线段BC的延长线上时,BF=DF+,在BF_上截取BM=DF,连接CM.同(1)③得△CBM≌△CDF得出CM=CF,∠BCM=∠DCF,证明△CMF是等腰直角三角形,得出MF=,即可得出结论;
③当点E在线段CB的延长线上时,BF+DF=,在DF上截取DM=BF,连接CM,同(1) ③得:ACDM≌△CBF得出CM=CF,∠DCM=∠BCF,证明△CMF是等腰直角三角形,得出MF=,即可得出结论.
【详解】
解:(1)①如图,
②∵四边形ABCD是正方形,
∴∠ABC=90°,,
∴,
∵BF⊥DE,
∴∠BFE=90°,
∴,
故答案为:45°-α;
③线段BF,CF,DF之间的数量关系是.
证明如下:在DF上截取DM=BF,连接CM.如图2所示,
∵ 正方形ABCD,
∴ BC=CD,∠BDC=∠DBC=45°,∠BCD=90°
∴∠CDM=∠CBF=45°-α,
∴△CDM≌△CBF(SAS).
∴ DM=BF, CM=CF,∠DCM=∠BCF.
∴ ∠MCF =∠BCF+∠MCE
=∠DCM+∠MCE
=∠BCD=90°,
∴ MF =.
∴
(2)分三种情况:①当点E在线段BC上时,DF=BF+,理由同(1)③;
②当点E在线段BC的延长线上时,BF=DF+,理由如下:
在BF上截取BM=DF,连接CM,如图3所示,
同(1) ③,得:△CBM≌△CDF (SAS),
∴CM=CF, ∠BCM=∠DCF.
∴∠MCF=∠DCF+∠MCD=∠BCM+∠MCD= ∠ BCD=90°,
∴△CMF是等腰直角三角形,
∴MF=,
∴BF=BM+MF=DF+;
③当点E在线段CB的延长线上时,BF+DF=;理由如下:
在DF上截取DM=BF,连接CM,如图4所示,
同(1)③得:△CDM≌△CBF,
∴CM=CF,∠DCM=∠BCF,
∴∠MCF=∠DCF+ ∠MCD= ∠DCF+∠BCF=∠BCD=90°,
∴△CMF是等腰直角三 角形,
∴MF=,
即DM+DF=,
∴BF+DF=;
综上所述,当点E在直线BC上时,线段BF,CF,DF之间的数导关系为:,或,或.
此题是四边形的一道综合题,考查正方形的性质,等腰直角三角形的判定及性质,全等三角形的判定及性质,注意解题中分情况讨论避免漏解.
18、已知:①③(或①④或②④或③④),证明见解析.
【解析】
试题分析:根据平行四边形的判定方法就可以组合出不同的结论,然后即可证明.
其中解法一是证明两组对角相等的四边形是平行四边形;
解法二是证明两组对边平行的四边形是平行四边形;
解法三是证明一组对边平行且相等的四边形是平行四边形;
解法四是证明两组对角相等的四边形是平行四边形.
试题解析:已知:①③,①④,②④,③④均可,其余均不可以.
解法一:
已知:在四边形ABCD中,①AD∥BC,③∠A=∠C,
求证:四边形ABCD是平行四边形.
证明:∵AD∥BC,
∴∠A+∠B=180°,∠C+∠D=180°.
∵∠A=∠C,
∴∠B=∠D.
∴四边形ABCD是平行四边形.
解法二:
已知:在四边形ABCD中,①AD∥BC,④∠B+∠C=180°,
求证:四边形ABCD是平行四边形.
证明:∵∠B+∠C=180°,
∴AB∥CD,
又∵AD∥BC,
∴四边形ABCD是平行四边形;
解法三:
已知:在四边形ABCD中,②AB=CD,④∠B+∠C=180°,
求证:四边形ABCD是平行四边形.
证明:∵∠B+∠C=180°,
∴AB∥CD,
又∵AB=CD,
∴四边形ABCD是平行四边形;
解法四:
已知:在四边形ABCD中,③∠A=∠C,④∠B+∠C=180°,
求证:四边形ABCD是平行四边形.
证明:∵∠B+∠C=180°,
∴AB∥CD,
∴∠A+∠D=180°,
又∵∠A=∠C,
∴∠B=∠D,
∴四边形ABCD是平行四边形.
考点:平行四边形的判定.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、360°.
【解析】
解:n(n≥3)边形的外角和都等于360°.
20、1
【解析】
∵AM=AC,BN=BC,∴AB是△ABC的中位线,
∴AB=MN=1m,
故答案为1.
21、4.5
【解析】
根据题意可以求得x的值,从而可以求的这组数据的中位数.
【详解】
解:∵数据1、3、x、5、4、6的平均数是4,
∴
解得:x=5,
则这组数据按照从小到大的顺序排列为:1,3,4,5,5,6
则中位数为
故答案为:4.5
本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.
22、7
【解析】试题分析:将=10和g=10代入可得:S=-5+10t,则最大值为: =5,则离地面的距离为:5+2=7m.
考点:二次函数的最值.
23、
【解析】
解:如图,取AB的中点D,连接OD、CD,
∵正三角形ABC的边长为a,
,
在△ODC中,OD+CD>OC,
∴当O、D、C三点共线时OC最长,
最大值为.
二、解答题(本大题共3个小题,共30分)
24、.
【解析】
根据分式的混合运算法则进行运算,最后化成最简分式即可.
【详解】
,
=,
=
=.
此题主要考查了分式的加减运算,分工的化简等知识点的理解和掌握,能熟练地进行有关分式的运算是解此题的关键.
25、 (1)见解析;(1)见解析.
【解析】
(1)连接DN,根据矩形得出OB=OD,根据线段垂直平分线得出BN=DN,根据勾股定理求出DN的平方,即可求出答案;
(1)延长NO交AD于点P,连接PM,MN,证△BNO≌△DPO,推出OP=ON,DP=BN,根据线段垂直平分线求出PM=MN,根据勾股定理求出即可.
【详解】
(1)选①.证明如下:连接DN,
∵四边形ABCD是矩形,∴OB=OD,
∵∠DON=90°,∴BN=DN,
∵∠BCD=90°,∴DN1=CD1+CN1,∴BN1=CD1+CN1;
(1)延长NO交AD于点P,连接PM,MN,
∵四边形ABCD是矩形,∴OD=OB,AD∥BC,∴∠DPO=∠BNO,∠PDO=∠NBO,
在△BON和△DOP中,∵,∴△BON≌△DOP(AAS),∴ON=OP,BN=PD,
∵∠MON=90°,∴PM=MN,
∵∠ADC=∠BCD=90°,∴PM1=PD1+DM1,MN1=CM1+CN1,∴PD1+DM1=CM1+CN1,∴BN1+DM1=CM1+CN1.
本题考查了矩形的性质,线段垂直平分线,全等三角形的性质和判定,勾股定理等知识点的综合运用,主要考查学生的猜想能力和推理能力,题目比较好,但是有一定的难度.
26、(1)A的坐标(2,2);(2)1.
【解析】
(1)联立y=x和y=﹣2x+6,解方程组即可得到结论;
(2)根据三角形的面积公式即可得到结论.
【详解】
解:(1)∵直线y=x和y=-2x+6交于点A,
∴解得x=y=2,
∴点A的坐标(2,2);
(2)∵点C的坐标为(1,0),
∴OC=1,
∴△AOC的面积=×1×2=1.
本题考查了两直线相交与平行,解二元一次方程组,三角形的面积的计算,以及数形结合的数学思想,掌握的理解题意是解题的关键.
题号
一
二
三
四
五
总分
得分
河北省滦南县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】: 这是一份河北省滦南县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省承德市2024-2025学年九上数学开学教学质量检测试题【含答案】: 这是一份河北省承德市2024-2025学年九上数学开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省沧州市沧县2024-2025学年九上数学开学监测模拟试题【含答案】: 这是一份河北省沧州市沧县2024-2025学年九上数学开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。