河北省沧州市青县2024-2025学年数学九年级第一学期开学调研试题【含答案】
展开
这是一份河北省沧州市青县2024-2025学年数学九年级第一学期开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )
A.B.C.D.
2、(4分)九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16。这组数据的中位数、众数分别为( )
A.16,16B.10,16C.8,8D.8,16
3、(4分)关于的方程有实数解,那么的取值范围是()
A.B.C.D.且
4、(4分)为了了解中学课堂教学质量,我市教体局去年对全市中学教学质量进行调查方法是通过考试参加考试的为全市八年级学生,从中随机抽取600名学生的英语成绩进行分析对于这次调查,以下说法不正确的是( )
A.调查方法是抽样调查B.全市八年级学生是总体
C.参加考试的每个学生的英语成绩是个体D.被抽到的600名学生的英语成绩是样本
5、(4分)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是( )
A.21微克立方米B.20微克立方米
C.19微克立方米D.18微克立方米
6、(4分)运用分式基本性质,等式中缺少的分子为( )
A.aB.2aC.3aD.4a
7、(4分)下列几红数中,是勾股数的有( ).
①5、12、13;②13、14、15;③3k、4k、5k(k为正整数);④、2、.
A.1组B.2组C.3组D.4组
8、(4分)二十一世纪,纳米技术将被广泛应用,纳米是长度计量单位,1 纳米=0.000000001 米, 则 5 纳米可以用科学记数法表示为( )
A.米B.米C. 米D. 米
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分) “折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为_____尺.
10、(4分)如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,BF=6,则四边形ABEF的面积为________
11、(4分)如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是_____.
12、(4分)如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=20°,则∠2=_____.
13、(4分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=_____度.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,菱形纸片,对其进行如下操作:
把翻折,使得点与点重,折痕为;把翻折,使得点与点重合,折痕为 (如图2),连结.设两条折痕的延长线交于点.
(1)请在图2中将图形补充完整,并求的度数;
(2)四边形是菱形吗?说明理由.
15、(8分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
16、(8分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为(单位:吨/小时),卸完这批货物所需的时间为(单位:小时).
(1)求关于的函数表达式.
(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?
17、(10分)如图,在长方形中,,,动点、分别从点、同时出发,点以2厘米/秒的速度向终点移动,点以1厘米/秒的速度向移动,当有一点到达终点时,另一点也停止运动.设运动的时间为,问:
(1)当秒时,四边形面积是多少?
(2)当为何值时,点和点距离是?
(3)当_________时,以点、、为顶点的三角形是等腰三角形.(直接写出答案)
18、(10分).已知:如图4,在中,∠BAC=90°,DE、DF是的中位线,连结EF、AD. 求证:EF=AD.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一次函数(k,b为常数,)的图象如图所示,根据图象信息可得到关于x的方程的解为__________.
20、(4分)如图,已知图中的每个小方格都是边长为工的小正方形,每个小正方形的顶点称为格点,若与是位似图形,且顶点都在格点上,则位似中心的坐标是______.
21、(4分)如图,已知在中,AB=AC,点D在边BC上,要使BD=CD,还需添加一个条件,这个条件是_____________________ .(只需填上一个正确的条件)
22、(4分)如图,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,则草坪的面积是_____平方米.
23、(4分)已知直线与反比例函数的图象交于A、B两点,当线段AB的长最小时,以AB为斜边作等腰直角三角形△ABC,则点C的坐标是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,,平分交于点,于点,交于点,连接,求证:四边形是菱形.
25、(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,
(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.
①如图1,求证:BE=BF=3;
②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.
(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为 (直接写出结果).
26、(12分)如图,在中,,平分,垂直平分于点,若,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
结合轴对称图形的概念进行求解即可.
【详解】
解:根据轴对称图形的概念可知:
A、不是轴对称图形,故本选项错误;
B、是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项正确.
故选B.
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2、D
【解析】
根据众数和中位数的定义求解.找出次数最多的数为众数;把5个数按大小排列,位于中间位置的为中位数.
【详解】
解:在这一组数据中16是出现次数最多的,故众数是16;而将这组数据从小到大的顺序排列后,处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.
故选:D.
本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.
3、B
【解析】
由于x的方程(m-2)x2-2x+1=0有实数解,则根据其判别式即可得到关于m的不等式,解不等式即可求出m的取值范围.但此题要分m=2和m≠2两种情况.
【详解】
(1)当m=2时,原方程变为-2x+1=0,此方程一定有解;
(2)当m≠2时,原方程是一元二次方程,
∵有实数解,
∴△=4-4(m-2)≥0,
∴m≤1.
所以m的取值范围是m≤1.
故选:B.
此题考查根的判别式,解题关键在于分两种情况进行讨论,错误的认为原方程只是一元二次方程.
4、B
【解析】
根据全面调查与抽样调查的定义,总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,对各选项分析后利用排除法求解.
【详解】
、调查方法是抽样调查,正确;
、全市八年级学生的英语成绩是总体,错误;
、参加考试的每个学生的英语成绩是个体,正确;
、被抽到的600名学生的英语成绩是样本,正确.
故选:.
此题考查了总体、个体、样本、样本容量.解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考察对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位.
5、B
【解析】
按大小顺序排列这组数据,最中间那个数是中位数.
【详解】
解:从小到大排列此数据为:18,18,18,1,21,29,30,位置处于最中间的数是:1,
所以组数据的中位数是1.
故选B.
此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
6、D
【解析】
根据分式的基本性质即可求出答案.
【详解】
解:,
故选择:D.
本题考查分式的运算,解题的关键是熟练运用分式的基本性质,本题属于基础题型.
7、B
【解析】
勾股数是满足a2+b2=c2 的三个正整数,据此进行判断即可.
【详解】
解:∵满足a2+b2=c2 的三个正整数,称为勾股数,
∴是勾股数的有①5、12、13;③3k、4k、5k(k为正整数).
故选:B.
本题主要考查了勾股定理的逆定理,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.
8、C
【解析】
试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
解:5纳米=5×10﹣9,
故选C.
【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4.1.
【解析】
根据题意结合勾股定理得出折断处离地面的长度即可.
【详解】
解:
设折断处离地面的高度OA是x尺,根据题意可得:
x1+41=(10﹣x)1,
解得:x=4.1,
答:折断处离地面的高度OA是4.1尺.
故答案为:4.1.
本题主要考查了勾股定理的应用,在本题中理解题意,知道柱子折断后刚好构成一个直角三角形是解题的关键.
10、24
【解析】
首先证明四边形ABEF是菱形,由勾股定理求出OA,得出AE的长,即可解决问题.
【详解】
连接AE,
∵四边形ABCD为平行四边形
∴AD∥BC,AD=BC
∵BF为∠ABE的平分线,∴∠FBE=∠AFB,∴四边形ABEF为平行四边形
∵AB=AF,
∴根据勾股定理,即可得到AE=2=8.
∴四边形ABEF的面积=×AE×BF=24.
本题考查了菱形的性质和判定,平行四边形的性质和判定,勾股定理,等腰三角形的性质,平行线的性质等知识;证明四边形ABEF是菱形是解决问题的关键.
11、(0,)
【解析】
作点A关于y轴的对称点A',连接A'D,此时△ADE的周长最小值为AD+DA'的长;E点坐标即为直线A'D与y轴的交点;
【详解】
解:作点A关于y轴的对称点A',连接A'D,
此时△ADE的周长最小值为AD+DA'的长;
∵A的坐标为(﹣4,5),D是OB的中点,
∴D(﹣2,0),
由对称可知A'(4,5),
设A'D的直线解析式为y=kx+b,
∴,
∴,
∴,
∴E(0,);
故答案为(0,);
本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE的最短距离转化为线段A'D的长是解题的关键.
12、110°
【解析】
已知∠1=20°,可求得∠3=90°-20°=70°,再由矩形的对边平行,根据两直线平行,同旁内角互补可得∠2+∠3=180°,即可得∠2=110°.
13、1
【解析】
分析:连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.
详解:连接AC,
∵四边形ABCD是矩形,
∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,
∴∠E=∠DAE,
又∵BD=CE,
∴CE=CA,
∴∠E=∠CAE,
∵∠CAD=∠CAE+∠DAE,
∴∠E+∠E=30°,即∠E=1°,
故答案为1.
点睛:本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析,;(2)四边形是菱形,理由见解析
【解析】
(1)由菱形的性质可得AD=CD,∠A=∠C=45°,∠ADC=135°,由折叠的性质可得AE=DE=AD,GE⊥AD,∠A=∠GDA=45°,DF=FC=CD,HF⊥CD,∠C=∠CDH=45°,由四边形的内角和定理可求解;
(2)由题意可证GE∥DH,GD∥HF,可证四边形DGOH是平行四边形,由“ASA”可证△DEG≌△DFH,可得DG=DH,即可证四边形DGOH是菱形.
【详解】
解:(1)如图,延长EG,FH交于点O,
∵四边形ABCD是菱形,∠A=45°,
∴AD=CD,∠A=∠C=45°,∠ADC=135°,
∵把△AEG翻折,使得点A与点D重合,折痕为EG;把△CFH翻折,使得点C与点D重合,折痕为FH,
∴AE=DE=AD,GE⊥AD,∠A=∠GDA=45°,DF=FC=CD,HF⊥CD,∠C=∠CDH=45°,
∵∠EOF+∠OED+∠OFD+∠ADC=360°,
∴∠EOF=360°-90°-90°-135°=45°;
(2)四边形是菱形.理由如下:
∵∠ADC=135°,∠ADG=∠CDH=45°,
∴∠GDC=∠ADH=90°,且GE⊥AD,HF⊥CD,
∴GE∥DH,GD∥HF,
∴四边形DGOH是平行四边形,
∵AE=DE=AD,DF=FC=CD,AD=CD,
∴DE=DF,且∠ADG=∠CDH=45°,∠DEG=∠DFH=90°,
∴△DEG≌△DFH(ASA)
∴DG=DH,
∴四边形DGOH是菱形.
本题考查了翻折变换,菱形的判定和性质,平行四边形的判定和性质,以及全等三角形的判定和性质,灵活运用折叠的性质进行解题是本题的关键.
15、解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠2=∠3,2=∠1.
∵MN∥BC,∴∠1=∠3,3=∠1.
∴∠1=∠2,∠3=∠2.∴EO=CO,FO=CO.
∴OE=OF.
(2)∵∠2=∠3,∠2=∠1,∴∠2+∠2=∠3+∠1=90°.
∵CE=12,CF=3,∴.
∴OC=EF=1.3.
(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:
当O为AC的中点时,AO=CO,
∵EO=FO,∴四边形AECF是平行四边形.
∵∠ECF=90°,∴平行四边形AECF是矩形.
【解析】
(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠2,进而得出答案.
(2)根据已知得出∠2+∠2=∠3+∠1=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.
(3)根据平行四边形的判定以及矩形的判定得出即可.
16、 (1)v=;(2)平均每小时至少要卸货20吨.
【解析】
(1)直接利用vt=100进而得出答案;
(2)直接利用要求不超过5小时卸完船上的这批货物,进而得出答案.
【详解】
(1)由题意可得:100=vt,
则;
(2)∵不超过5小时卸完船上的这批货物,
∴t≤5,
则v≥=20,
答:平均每小时至少要卸货20吨.
考查了反比例函数的应用,正确得出函数关系式是解题关键.
17、(1)5厘米2;(2)秒或秒;(3)秒或秒或秒或秒.
【解析】
试题分析:(1)求出BP,CQ的长,即可求得四边形BCQP面积.
(2)过Q点作QH⊥AB于点H,应用勾股定理列方程求解即可.
(3)分PD=DQ,PD=PQ,DQ=PQ三种情况讨论即可.
(1)当t=1秒时,BP=6-2t=4,CQ=t=1,
∴四边形BCQP面积是厘米2.
(2)如图,过Q点作QH⊥AB于点H,则PH=BP-CQ=6-3t,HQ=2,
根据勾股定理,得, 解得.
∴当秒或秒时,点P和点Q距离是3cm.
(3)∵,
当PD=DQ时,,解得或(舍去);
当PD=PQ时,,解得或(舍去);
当DQ=PQ时,,解得或.
综上所述,当秒或秒或秒或秒时, 以点P、Q、D为顶点的三角形是等腰三角形.
考点:1.双动点问题;2.矩形的性质;3.勾股定理;4.等腰三角形的性质;5.分类思想的应用.
18、证明:因为DE,DF是△ABC的中位线
所以DE∥AB,DF∥AC …………. 2分
所以四边形AEDF是平行四边形 ………….… 5分
又因为∠BAC=90°
所以平行四边形AEDF是矩形……………………分
所以EF=AD …………………………….….………10分
【解析】略
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x=1
【解析】
直接根据图象找到y=kx+b=4的自变量的值即可.
【详解】
观察图象知道一次函数y=kx+b(k、b为常数,且k≠0)的图象经过点(1,4),
所以关于x的方程kx+b=4的解为x=1,
故答案为:x=1.
本题考查了一次函数与一元一次不等式,能结合图象确定方程的解是解答本题的关键.
20、(8,0)
【解析】
连接任意两对对应点,看连线的交点为那一点即为位似中心.
【详解】
解:连接BB1,A1A,易得交点为(8,0).
故答案为:(8,0).
用到的知识点为:位似中心为位似图形上任意两对对应点连线的交点.
21、AD⊥BC
【解析】
根据等腰三角形“三线合一”,即可得到答案.
【详解】
∵在中,AB=AC,,
.
故答案为:.
本题主要考查等腰三角形的性质,掌握等腰三角形“三线合一”,是解题的关键.
22、1.
【解析】
草坪的面积等于矩形的面积-两条路的面积+两条路重合部分的面积,由此计算即可.
【详解】
解:S=32×24-2×24-2×32+2×2=1(m2).
故答案为:1.
本题考查了生活中的平移现象,解答本题的关键是求出草坪总面积的表达式.
23、或
【解析】
联立方程组,求出A、B的坐标,分别用k表示,然后根据等腰直角三角形的两直角边相等求出k的值,即可求出结果.
【详解】
由题可得,
可得,
根据△ABC是等腰直角三角形可得:
,
解得,
当k=1时,点C的坐标为,
当k=-1时,点C的坐标为,
故答案为或.
本题主要考查了一次函数与反比例函数的综合应用,利用好等腰直角三角形的条件很重要.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
根据题意首先利用ASA证明,再得出四边形是平行四边形,再利用四边相等来证明四边形是菱形即可.
【详解】
证明:∵,
∴,
∵平分交于点,
∴,
∴,
∴,
∵,
∴,
在和中
,,,
∴,
∴,
∴四边形是平行四边形,
∵,
∴四边形是菱形
此题考查全等三角形的判定与性质,平行四边形的判定,菱形的判定,解题关键在于利用平行线的性质来求证.
25、(1)①详见解析;②12;(2).
【解析】
(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;
②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;
(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.
【详解】
解:(1)①∵四边形ABCD是正方形,
∴AB=BC=AD=6,∠BAD=∠BCD=90°,
∵点E是中点,
∴AE=AD=3,
在Rt△ABE中,根据勾股定理得,BE==3,
在△BAE和△BCF中,
∴△BAE≌△BCF(SAS),
∴BE=BF,
∴BE=BF=3;
②如图2,连接BD,
在Rt△ABC中,AC=AB=6,
∴BD=6,
∵四边形ABCD是正方形,
∴AD∥BC,
∴△AEM∽△CMB,
∴,
∴,
∴AM=AC=2,
同理:CN=2,
∴MN=AC﹣AM﹣CN=2,
由①知,△ABE≌△CBF,
∴∠ABE=∠CBF,
∵AB=BC,∠BAM=∠BCN=45°,
∴△ABM≌△CBN,
∴BM=BN,
∵AC是正方形ABCD的对角线,
∴AB=AD,∠BAM=∠DAM=45°,
∵AM=AM,
∴△BAM≌△DAM,
∴BM=DM,
同理:BN=DN,
∴BM=DM=DN=BN,
∴四边形BMDN是菱形,
∴S四边形BMDN=BD×MN=×6×2=12;
(2)如图3,设DH=a,
连接BD,
∵四边形ABCD是正方形,
∴∠BCD=90°,
∵DH⊥BH,
∴∠BHD=90°,
∴点B,C,D,H四点共圆,
∴∠DBH=∠DCH=22.5°,
在BH上取一点G,使BG=DG,
∴∠DGH=2∠DBH=45°,
∴∠HDG=45°=∠HGD,
∴HG=HD=a,
在Rt△DHG中,DG=HD=a,
∴BG=a,
∴BH=BG+HG=A+A=(+1)a,
∴.
故答案为.
此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.
26、的长为.
【解析】
根据角平分线的性质可得DE=CE,根据垂直平分线可得AE=BE,进而得到,设,则,根据直角三角形30°角所对直角边为斜边的一半得到关于x的方程,然后求解方程即可.
【详解】
解:设,则,
平分,,,
,
又垂直平分,
,
,
在中,,
,
,即,
解得.
即的长为.
本题主要考查角平分线的性质,垂直平分线的性质,直角三角形30°角所对直角边为斜边的一半等,解此题的关键在于熟练掌握其知识点.
题号
一
二
三
四
五
总分
得分
批阅人
天数
3
1
1
1
1
PM2.5
18
20
21
29
30
相关试卷
这是一份河北省石家庄市2024-2025学年九年级数学第一学期开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河北省沧州市任丘市2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河北省沧州市献县数学九年级第一学期开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。