


河北省南宫市奋飞中学2024年数学九上开学学业水平测试试题【含答案】
展开
这是一份河北省南宫市奋飞中学2024年数学九上开学学业水平测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)直线y=﹣2x+5与x轴、y轴的交点坐标分别是( )
A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)
2、(4分)若点(3,1)在一次函数y=kx-2(k≠0)的图象上,则k的值是( )
A.5B.4C.3D.1
3、(4分)电话每台月租费元,市区内电话(三分钟以内)每次元,若某台电话每次通话均不超过分钟,则每月应缴费(元)与市内电话通话次数之间的函数关系式是( )
A.B.
C.D.
4、(4分)如图在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为( )
A.26cmB.24cmC.20cmD.18cm
5、(4分)用配方法解方程x2﹣6x+3=0,下列变形正确的是( )
A.(x﹣3)2=6B.(x﹣3)2=3C.(x﹣3)2=0D.(x﹣3)2=1
6、(4分)经过多边形一个角的两边剪掉这个角,则得到的新多边形的外角和( )
A.比原多边形多B.比原多边形少C.与原多边形外角和相等D.不确定
7、(4分)a,b,c为常数,且,则关于x的方程根的情况是
A.有两个相等的实数根B.有两个不相等的实数根
C.无实数根D.有一根为0
8、(4分)如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
A.25B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知如图所示,AB=AD=5,∠B=15°,CD⊥AB于C,则CD=___.
10、(4分)要使二次根式有意义,则的取值范围是________.
11、(4分)如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为(1,1),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为________.
12、(4分)观察下列各式
==2;==3;==4;==5……请你找出其中规律,并将第n(n≥1)个等式写出来____________。
13、(4分)在x2+(________)+4=0的括号中添加一个关于的一次项,使方程有两个相等的实数根.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.
15、(8分)如图,正比例函数与反比例函数的图像交于A,B两点,过点A作AC⊥x轴,垂足为C,△ACO的面积为1.
(1)求反比例函数的表达式;
(2)点B的坐标为 ;
(3)当时,直接写出x的取值范围.
16、(8分)国家规定,“中小学生每天在校体育锻炼时间不小于1小时”,某地区就“每天在校体育锻炼时间”的问题随机调查了若干名中学生,根据调查结果制作如下统计图(不完整).其中分组情况:A组:时间小于0.5小时;B组:时间大于等于0.5小时且小于1小时;C组:时间大于等于1小时且小于1.5小时;D组:时间大于等于1.5小时.
根据以上信息,回答下列问题:
(1)A组的人数是 人,并补全条形统计图;
(2)本次调查数据的中位数落在组 ;
(3)根据统计数据估计该地区25 000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有多少人.
17、(10分)甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),求a+b的值.
18、(10分)如图1,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′.
(1)求证:△ABD≌△ACD′;
(1)如图1,若∠BAC=110°,探索BD,DE,CE之间满足怎样的数量关系时,△CD′E是正三角形;
(3)如图3,若∠BAC=90°,求证:DE1=BD1+EC1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算的结果是__________.
20、(4分)根据数量关系:的5倍加上1是正数,可列出不等式:__________.
21、(4分)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为=65.84,乙跳远成绩的方差为=285.21,则成绩比较稳定的是_____.(填“甲”或“乙”)
22、(4分)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为______.
23、(4分)一组正方形按如图所示的方式放置,其中顶点在y轴上,顶点、、、、、、在x轴上,已知正方形的边长为1,,,则正方形的边长是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简,再求值: [其中,]
25、(10分)已知等腰三角形的周长为, 底边长是腰长的函数.
写出这个函数关系式;
求自变量的取值范围;
画出这个函数的图象.
26、(12分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:
(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.
(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分别根据点在坐标轴上坐标的特点求出对应的、的值,即可求出直线与轴、轴的交点坐标.
【详解】
令,则,
解得,
故此直线与轴的交点的坐标为;
令,则,
故此直线与轴的交点的坐标为.
故选:.
本题考查的是坐标轴上点的坐标特点,一次函数(,、是常数)的图象是一条直线,它与轴的交点坐标是;与轴的交点坐标是.
2、D
【解析】
试题分析:∵点(3,1)在一次函数y=kx-2(k≠0)的图象上,∴3k-2=1,解得k=1.
故选D.
考点:一次函数图象上点的坐标特征.
3、C
【解析】
本题考查了一次函数的解析式,设为,把k和b代入即可.
【详解】
设函数解析式为:,
由题意得,k=0.2,b=28,
∴函数关系式为:.
故选:C.
本题考查了一次函数解析式的表示,熟练掌握一次函数解析式的表示方法是解题的关键.
4、D
【解析】
根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.
【详解】
解:∵AC=4cm,若△ADC的周长为13cm,
∴AD+DC=13﹣4=9(cm).
又∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∴平行四边形的周长为2(AB+BC)=18cm.
故选D.
5、A
【解析】
把常数项3移到等号的右边,再在等式的两边同时加上一次项系数﹣6的一半的平方,配成完全平方的形式,从而得出答案.
【详解】
解:∵x2﹣6x+3=0,
∴x2﹣6x=﹣3,
∴x2﹣6x+9=6,即(x﹣3)2=6,
故选:A.
本题考查了一元二次方程的解法---配方法,熟练掌握配方的步骤是解题的关键
6、C
【解析】
根据外角和的定义即可得出答案.
【详解】
多边形外角和均为360°,故答案选择C.
本题考查的是多边形的外角和,比较简单,记住多边形的外角和均为360°.
7、B
【解析】
试题解析:∵,∴ac<1.在方程中,△=≥﹣4ac>1,∴方程有两个不相等的实数根.故选B.
8、D
【解析】
本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.
【详解】
由勾股定理可知,
∵OB=,
∴这个点表示的实数是.
故选D.
本题考查了勾股定理的运用和如何在数轴上表示一个无理数的方法,解决本题的关键是根据勾股定理求出OB的长.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据等边对等角可得∠ADB=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DAC=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得CD=AD.
【详解】
∵AB=AD,
∴∠ADB=∠B=15°,
∴∠DAC=∠ADB+∠B=30°,
又∵CD⊥AB,
∴CD=AD=×5=.
故答案为:.
本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.
10、x≥1
【解析】
根据二次根式被开方数为非负数进行求解.
【详解】
由题意知,,
解得,x≥1,
故答案为:x≥1.
本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.
11、 (-1,-1)
【解析】
根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.
【详解】
菱形OABC的顶点O(0,0),B(2,2),得
D点坐标为(1,1).
每秒旋转45°,则第60秒时,得
45°×60=2700°,
2700°÷360=7.5周,
OD旋转了7周半,菱形的对角线交点D的坐标为(-1,-1),
故答案为:(-1,-1).
本题考查了旋转的性质,利用旋转的性质是解题关键.
12、
【解析】
根据给定例子,找规律,即可得到答案.
【详解】
由==2;==3;==4;==5,得=,故本题答案是:.
本题主要考查利用算术平方根找规律,学生们需要认真分析例子,探索规律即可.
13、(只写一个即可)
【解析】
设方程为x2+kx+4=0,根据方程有两个相等的实数根可知∆=0,据此列式求解即可.
【详解】
设方程为x2+kx+4=0,由题意得
k2-16=0,
∴k=±4,
∴一次项为(只写一个即可).
故答案为:(只写一个即可).
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆0
∴k=8,反比例函数表达式为 ;
(2)联立 ,可解得 或,
∵B点在第三象限,
∴点B坐标为(-2,-1).
(3)根据(2)易得A点坐标为(2,1),
所以当-20;
(2)考查函数交点问题,两个函数的交点的横、纵坐标分别是联立它们,所形成的方程组的解集对应的x、y值;
(3)可借助图象比较两个函数的大小,这里一定要注意分不同区间去考虑.
16、 (1)50,补图见解析;(2)C;(3)14000人.
【解析】
试题分析:(1)根据题意和统计图可以得到A组的人数;
(2)根据(1)中补全的统计图可以得到这组数据的中位数落在哪一组;
(3)根据统计图中的数据可以估计该地区达到国家规定的每天在校体育锻炼时间的人数.
试题解析:
()由统计图可得,组人数为:,
因此,本题正确答案是:,补全的条形统计图如图所示.
()由补全的条形统计图可得,中位数落在组,
因此,本题正确答案是:.
()根据题意可得,
该地区名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有:
(人),
因此,本题正确答案是:.
17、1
【解析】
根据题意甲看错了b,分解结果为(x+2)(x+4),可得a系数是正确的,乙看错了a,分解结果为(x+1)(x+9),b系数是正确的,在利用因式分解是等式变形,可计算的参数a、b的值.
【详解】
解:∵甲看错了b,所以a正确,
∵(x+2)(x+4)=x2+6x+8,
∴a=6,
∵因为乙看错了a,所以b正确
∵(x+1)(x+9)=x2+10x+9,
∴b=9,
∴a+b=6+9=1.
本题主要考查因式分解的系数计算,关键在于弄清那个系数是正确的.
18、(1)见解析;(1)BD=DE=CE的数量关系时,△CD′E是正三角形;(3)见解析.
【解析】
(1)根据轴对称的性质得到AD=AD`,即可证明△ABD≌△ACD′
(1)由(1)可得∠BAD=∠CAD′,∠B=∠ACD′,再根据轴对称的性质得到∠EAD′+∠CAE=∠BAD+∠CAE=∠DAE=∠BAC=60°,得到△CD′E是正三角形,即可解答
(3)利用勾股定理即可解答
【详解】
(1)证明:∵△ADE与△AD′E是关于AE的轴对称图形,
∴AD=AD′,
在△ABD和△ACD′中, ,
∴△ABD≌△ACD′(SSS);
(1)解:∵△ABD≌△ACD′,
∴∠BAD=∠CAD′,∠B=∠ACD′,
∵△ADE与△AD′E是关于AE的轴对称图形,
∴∠DAE=∠EAD′,DE=ED′,
∴∠EAD′+∠CAE=∠BAD+∠CAE=∠DAE=∠BAC=60°,
∵△CD′E是正三角形,
∴CE=CD′=ED′,
∵BD=CD′,DE=ED′,
∴BD=DE=CE;
(3)证明:∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=∠ACD′=45°,
∴∠ECD′=90°,
∴ED′1=CD′1+EC1,
∵BD=CD′,DE=ED′,
∴DE1=BD1+EC1.
此题考查全等三角形的判定与性质,勾股定理,等边三角形的判定与性质,解题关键在于利用全等三角形的性质进行解答
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
分析:先根据二次根式的乘法法则进行计算,然后化简后合并即可.
详解:
=
=
故答案为:.
点睛:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
20、
【解析】
问题中的“正数”是关键词语,将它转化为数学符号即可.
【详解】
题中“x的5倍加上1”表示为:
“正数”就是
的5倍加上1是正数,可列出不等式:
故答案为:.
用不等式表示不等关系是研究不等式的基础,在表示时,一定要抓住关键词语,
弄清不等关系,把文字语言和不等关系转化为用数学符号表示的不等式.
21、甲.
【解析】
试题分析:∵=65.84,=285.21,∴<,∴甲的成绩比乙稳定.故答案为甲.
考点:方差.
22、
【解析】
通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用面积公式解答即可.
【详解】
∵在△ABC中,∠C=90°,AC=4,BC=3,
∴AB=5,
∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,
∴AD=AB=5,
∴CD=AD−AC=1,
∴四边形AEDB的面积为,
故答案为.
本题考查的知识点是旋转的性质,解题关键是熟记旋转前后的对应边相等.
23、
【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
【详解】
正方形的边长为1,,,
,,,
,
则,
同理可得:,
故正方形的边长是:,
则正方形的边长为:,
故答案为:.
此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
分析:先化简,再把代入化简后的式子进行运算即可.
详解:
,
当x=时,
原式=
点睛:本题考查了分式的化简求值.
25、(1);(2);(3)见详解.
【解析】
(1)根据等腰三角形的周长计算公式表示即可;
(2)根据构成三角形三边的关系即可确定自变量的取值范围;
(3)可取两个点,在平面直角坐标系中描点、连线即可.
【详解】
解:(1)这个函数关系式为;
(2)由题意得,即,
解得,
所以自变量的取值范围为;
(3)当时,;当时,,函数关系式()的图象如图所示,
本题考查了一次函数关系式、函数自变量的取值范围及函数的图象,结合等腰三角形的性质及三角形三边的关系是解题的关键.
26、(1)丙,乙,甲;(2)甲被录用.
【解析】
(1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;
(2)先算出甲、乙、丙的总分,根据公司的规定先排除丙,再根据甲的总分最高,即可得出甲被录用.
【详解】
(1)甲=(85+80+75)÷3=80(分),乙=(80+90+73)÷3=81(分),丙=(83+79+90)÷3=84(分),则从高到低确定三名应聘者的排名顺序为:丙,乙,甲;
(2)甲的总分是:85×60%+80×30%+75×10%=82.5(分),乙的总分是:80×60%+90×30%+73×10%=82.3(分),丙的总分是:83×60%+79×30%+90×10%=82.5(分).
∵公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴丙排除,∴甲的总分最高,甲被录用.
本题考查了算术平均数和加权平均数的计算.平均数等于所有数据的和除以数据的个数.
题号
一
二
三
四
五
总分
得分
x
…
﹣1
1
2
…
y
…
m
﹣1
1
…
笔 试
面 试
体 能
甲
85
80
75
乙
80
90
73
丙
83
79
90
相关试卷
这是一份河北省邯郸市邯郸市育华中学2025届数学九上开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届河北省大城县数学九上开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年西藏达孜中学数学九上开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。