小学数学北师大版(2024)四年级上册4 乘法结合律同步练习题
展开1.125×(8×14)=(125×8)×14,这是应用了( )
A.乘法交换律B.乘法结合律
C.乘法分配律
2.125×17×8=17×(125×8)=17×1000=17000,运用了( )
A.乘法交换律B.乘法结合律
C.加法结合律D.乘法交换律和结合律
3.下面各式中,( )运用了乘法结合律。
A.57×99=57×(100﹣1)
B.58×a+b=58×a+58×b
C.25×125×8×40=(25×40)×(125×8)
二.填空题(共4小题)
4.6×3×2×5=(6×3)×(2×5),应用了乘法 律。
5.8×49×125=49×(8×125)运用了 律和 律。
6.在横线上填合适的数。
25×97=25×(100﹣ )
(13×25)×40=13×( × )
7.在计算25×44时可以运用 律将算式写成25×40+25×4;也可以运用乘法结合律将算式写成 进行简算。
三.解答题(共2小题)
8.根据运算定律填空.
a+(□+c)=(□+b)+c a×(□×7)=( a×b)×□
9.用两种不同的简便方法计算44×25.
四.连线题(共1小题)
10.把左右两边结果相等的算式用线连起来。
四年级同步个性化分层作业4.4乘法结合律
参考答案与试题解析
一.选择题(共3小题)
1.125×(8×14)=(125×8)×14,这是应用了( )
A.乘法交换律B.乘法结合律
C.乘法分配律
【考点】运算定律与简便运算;乘法结合律.
【专题】运算定律及简算;运算能力.
【答案】B
【分析】乘法结合律:先乘前两个数,或先乘后两个数,积不变。如a×b×c=a×(b×c)。
【解答】解:125×(8×14)=(125×8)×14,这是应用了乘法结合律。
故选:B。
【点评】此题重点考查了学生对乘法结合律的掌握与运用情况。
2.125×17×8=17×(125×8)=17×1000=17000,运用了( )
A.乘法交换律B.乘法结合律
C.加法结合律D.乘法交换律和结合律
【考点】运算定律与简便运算.
【专题】运算能力.
【答案】D
【分析】根据125×17×8=17×(125×8),125与17交换了位置,符合乘法交换律;先算125×8,再与17相乘,符合乘法结合律。据此解答。
【解答】解:125×17×8
=17×(125×8)
=17×1000
=17000
计算过程运用了乘法交换律和乘法结合律。
故选:D。
【点评】此题重点考查了学生对乘法交换律和结合律的掌握与运用情况。
3.下面各式中,( )运用了乘法结合律。
A.57×99=57×(100﹣1)
B.58×a+b=58×a+58×b
C.25×125×8×40=(25×40)×(125×8)
【考点】运算定律与简便运算;乘法结合律;乘法分配律.
【专题】运算定律及简算;运算能力.
【答案】C
【分析】乘法交换律:两个因数交换位置,积不变,如a×b=b×a。
乘法结合律:先乘前两个数,或先乘后两个数,积不变,如a×b×c=a×(b×c)。
乘法分配律的概念为:两个数的和乘另一个数,等于把这个数分别同两个加数相乘,再把两个积相加,得数不变;用字母表示:(a+b) c=a×c+b×c;据此解答即可。
【解答】解:A.57×99=57×(100﹣1),可以运用了乘法分配律简算。
B.58×a+b≠58×a+58×b,计算错误。
C.25×125×8×40=(25×40)×(125×8)运用了乘法交换律与乘法结合律。
故选:C。
【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法。
二.填空题(共4小题)
4.6×3×2×5=(6×3)×(2×5),应用了乘法 结合 律。
【考点】运算定律与简便运算.
【专题】运算能力.
【答案】结合。
【分析】根据乘法结合律的意义,三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。用字母表示为:(a×b)×c=a×(b×c)。据此解答。
【解答】解:6×3×2×5=(6×3)×(2×5),应用了乘法结合律。
故答案为:结合。
【点评】此题考查的目的是理解掌握乘法结合律的意义及应用。
5.8×49×125=49×(8×125)运用了 乘法交换 律和 乘法结合 律。
【考点】运算定律与简便运算.
【专题】运算定律及简算;应用意识.
【答案】乘法交换、乘法结合。
【分析】根据乘法交换律的意义,a×b=b×a,乘法结合律的意义,(a×b)×c=a×(b×c),据此解答。
【解答】解:8×49×125=49×(8×125),运用了乘法交换律和乘法结合律。
故答案为:乘法交换、乘法结合。
【点评】此题考查的目的是理解掌握乘法交换律、乘法结合律的意义及应用。
6.在横线上填合适的数。
25×97=25×(100﹣ 3 )
(13×25)×40=13×( 25 × 40 )
【考点】运算定律与简便运算.
【专题】运算能力.
【答案】3,25,40。
【分析】25×97,转化为:25×(100﹣3),运用乘法分配律简算;
(13×25)×40,运用乘法结合律,把25与40结合起来进行计算简便。
【解答】解:25×97
=25×(100﹣3)
=25×100﹣25×3
=2500﹣75
=2425
(13×25)×40
=13×(25×40)
=13×1000
=13000
根答案为:3,25,40。
【点评】此题考查的目的是理解掌握乘法分配律、乘法结合律的意义及应用。
7.在计算25×44时可以运用 乘法分配 律将算式写成25×40+25×4;也可以运用乘法结合律将算式写成 25×4×11 进行简算。
【考点】运算定律与简便运算.
【专题】数据分析观念;运算能力.
【答案】乘法分配,25×4×11。
【分析】(1)乘法分配律是指两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。
(2)乘法结合律:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。
【解答】解:25×44
=25×(40+4)
=25×40+25×4
=1000+100
=1100
25×44
=25×4×11
=100×11
=1100
所以,在计算25×44时可以运用乘法分配律将算式写成25×40+25×4;也可以运用乘法结合律将算式写成25×4×11进行简算。
故答案为:乘法分配,25×4×11。
【点评】正确理解乘法结合律和乘法分配律的意义,是解答此题的关键。
三.解答题(共2小题)
8.根据运算定律填空.
a+(□+c)=(□+b)+c a×(□×7)=( a×b)×□
【考点】运算定律与简便运算.
【专题】运算定律及简算.
【答案】见试题解答内容
【分析】①根据加法结合律填空;
②根据乘法结合律填空.
【解答】解:a+(b+c)=(a+b)+c
a×(b×7)=( a×b)×7;
故答案为:b,a,b,7.
【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.
9.用两种不同的简便方法计算44×25.
【考点】运算定律与简便运算.
【专题】运算定律及简算.
【答案】见试题解答内容
【分析】第一种方法:将44拆分为40+4后,根据乘法分配律计算.
第二种方法:将44变为11×4后根据乘法结合律计算.
【解答】解:44×25
=(40+4)×25,
=40×25+4×25,
=1000+100,
=1100;
44×25
=11×(4×25),
=11×100,
=1100.
【点评】同一个算式,从不同的角度思考,可以找出不同的简算方法.
四.连线题(共1小题)
10.把左右两边结果相等的算式用线连起来。
【考点】运算定律与简便运算.
【专题】运算定律及简算;运算能力.
【答案】
【分析】(44+56)+28连线44+28+56,运用加法交换律和加法结合律;
30×16连线16×30,运用乘法交换律;
4×27×25连线27×(4×25),运用乘法交换律和加法结合律;
88×125连线125×8×11,把88分成(8×11),再运用乘法结合律。
【解答】解:
【点评】掌握运算定律和简算方法是解题关键。
考点卡片
1.乘法结合律
【知识点归纳】
1、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。字母表示:a×b=b×a
2、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。字母表示:(a×b)×c=a×(b×c)
3、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。字母表示:
①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;
②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)
【方法总结】
乘法结合律简算例子:
99×125×8
=99×(125×8)
=99×1000
=99000
【常考题型】
每本相册都是32页,每页可以插8张照片,5本相册可以插多少张照片?
答案:32×8×5=1280(页)
观察下面的式子的特点并计算。
答案:3800;3000;390
2.乘法分配律
【知识点归纳】
1、乘法分配律:两个数的和(或差)与一个数相乘,可以把两个加数(或被减数、减数)分别与这个数相乘,在把两个积相加(或相减),结果不变。用字母表示数:(a+b)×c=a×c+b×c或(a﹣b)×c=a×c﹣b×c
2、式子的特点:在两个乘法式子中,有一个相同的因数;另为两个不同的因数之和(或之差)基本上是能凑成整十、整百、整千的数。
3、102×88、99×15这类题的特点:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成整十、整百、整千与一个数的和(或差),再应用乘法分配律可以使运算简便。
【方法总结】
乘法分配律简算例子:
(一)分解式
25×(40+4)
=25×40+25×4
=1000+100
=1100
(二)合并式
135×12—135×2
=135×(12—2)
=135×10
=1350
(三)特殊1
99×256+256
=99×256+256×1
=256×(99+1)
=256×100
=25600
(四)特殊2
45×102
=45×(100+2)
=45×100+45×2
=4500+90
=4590
(五)特殊3
99×26
=(100—1)×26
=100×26—1×26
=2600—26
=2574
(六)特殊4
35×8+35×6—4×35
=35×(8+6—4)
=35×10
=350
【常考题型】
1、练习:
91×111+111×9 25×78+22×25 43×98+43×2
答案:11100;2500;4300
2、李阿姨购进了60套运动服,这种运动服上衣75元,裤子45元,花了多少钱?
答案:(75+45)×60=7200(元)
3.运算定律与简便运算
【知识点归纳】
1、加法运算:
①加法交换律:两个加数交换位置,和不变.如a+b=b+a
②加法结合律:先把前两个数相加,或先把后两个数相加,和不变.如:a+b+c=a+(b+c)
2、乘法运算:
①乘法交换律:两个因数交换位置,积不变.如a×b=b×a.
②乘法结合律:先乘前两个数,或先乘后两个数,积不变.如a×b×c=a×(b×c)
③乘法分配律:两个数的和,乘以一个数,可以拆开来算,积不变.如a×(b+c)=ab+ac
④乘法分配律的逆运算:一个数乘另一个数的积加它本身乘另一个数的积,可以把另外两个数加起来再乘这个数.如ac+bc
=(a+b)×c
3、除法运算:
①除法性质:一个数连续除以两个数,可以先把后两个数相乘,再相除.如a÷b÷c=a÷(b×c)
②商不变规律:被除数和除数同时乘上或除以相同的数(0除外)它们的商不变.如a÷b=(an)÷(bn)=(a÷n)÷(b÷n) (n≠0 b≠0)
4、减法运算:
减法性质:一个数连续减去两个数,可以用这个数减去两个数的和.如a﹣b﹣c=a﹣(b+c)
【命题方向】
常考题型:
例1:0.65×201=0.65×(200+1)=0.65×200+0.65运用了乘法的( )
A、交换律 B、结合律 C、分配律
分析:乘法分配律的概念为:两个数的和乘另一个数,等于把这个数分别同两个加数相乘,再把两个积相加,得数不变,用字母表示:(a+b) c=ac+ac.据此可知,0.65×201=0.65×(200+1)=0.65×200+0.65运用了乘法分配律.
解:根据乘法分配律的概念可知,
0.65×201=0.65×(200+1)=0.65×200+0.65运用了乘法分配律.
故选:C.
点评:本题利用具体的算式考查了学生对于乘法分配律的理解.
例2:125×25×32=(125×8)×(25×4),这里运用了( )
A、乘法交换律 B、乘法结合律 C、乘法交换律和乘法结合律
分析:在125×25×32=(125×8)×(25×4)中,是把32看作8×4,然后用乘法交换律变成125×8×25×4,再运用乘法结合律计算,即(125×8)×(25×4).
解:125×25×32=(125×8)×(25×4),运用了乘法交换律和乘法结合律.
故选:C.
点评:此题重点考查了学生对乘法交换律和结合律的掌握与运用情况.
44×25
44×25.
(44+56)+28
125×8×11
30×16
44+28+56
4×27×25
16×30
88×125
27×(4×25)
44×25
44×25.
(44+56)+28
125×8×11
30×16
44+28+56
4×27×25
16×30
88×125
27×(4×25)
38×25×4
125×3×8
(13×5)×6
数学四年级上册2 摸球游戏课时训练: 这是一份数学四年级上册<a href="/sx/tb_c100581_t7/?tag_id=28" target="_blank">2 摸球游戏课时训练</a>,共10页。试卷主要包含了看图回答等内容,欢迎下载使用。
数学四年级上册3 秋游习题: 这是一份数学四年级上册<a href="/sx/tb_c23626_t7/?tag_id=28" target="_blank">3 秋游习题</a>,共8页。试卷主要包含了用竖式计算等内容,欢迎下载使用。
小学数学北师大版(2024)四年级上册4 旋转与角习题: 这是一份小学数学北师大版(2024)四年级上册<a href="/sx/tb_c23610_t7/?tag_id=28" target="_blank">4 旋转与角习题</a>,共10页。试卷主要包含了一个锐角和一个直角的和是一个,图中有个直角,关于“角”,下列说法正确的是,把下面的角按从小到大的顺序排列,比较角的大小,按要求画一画等内容,欢迎下载使用。