河北省武安市2024-2025学年数学九上开学学业水平测试试题【含答案】
展开
这是一份河北省武安市2024-2025学年数学九上开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,等边与正方形重叠,其中,两点分别在,上,且,若,,则的面积为( )
A.1B.
C.2D.
2、(4分)甲、乙、丙三位选手各10次射击成绩的平均数和方差统计如表:
已知乙是成绩最稳定的选手,且乙的10次射击成绩不都一样,则a的值可能是( )
A.0B.0.020C.0.030D.0.035
3、(4分)武汉某中学体育特长生的年龄,经统计有12、13、14、15四种年龄,统计结果如图.根据图中信息可以判断该批队员的年龄的众数和中位数为( )
A.8和6B.15和14C.8和14D.15和13.5
4、(4分)某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )
A.2400元、2400元
B.2400元、2300元
C.2200元、2200元
D.2200元、2300元
5、(4分)如图,平面直角坐标系中,在边长为1的正方形的边上有—动点沿正方形运动一周,则的纵坐标与点走过的路程之间的函数关系用图象表示大致是( )
A. B. C. D.
6、(4分)如图,在梯形ABCD中,AD//BC,E为BC上一点,DE//AB,AD的长为2,BC的长为4,则CE的长为( ).
A.1B.2C.3D.4
7、(4分)多项式m2﹣4与多项式m2﹣4m+4的公因式是( )
A.m﹣2B.m+2C.m+4D.m﹣4
8、(4分)如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为( )
A.12B.11C.10D.9
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)满足a2+b2=c2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①_____; ②_____.
10、(4分)请写出一个图象经过点的一次函数的表达式:______.
11、(4分)A、B、C三瓶不同浓度的酒精,A瓶内有酒精2kg,浓度x%,B瓶有酒精3kg,浓度y%,C瓶有酒精5kg,浓度z%,从A瓶中倒出10%,B瓶中倒出20%,C瓶中倒出24%,混合后测得浓度33.5%,将混合后的溶液倒回瓶中,使它们恢复原来的质量,再从A瓶倒出30%,B瓶倒出30%,C瓶倒出30%,混合后测得浓度为31.5%,测量发现,,,且x、y、z均为整数,则把起初A、B两瓶酒精全部混合后的浓度为______.
12、(4分)若关于有增根,则_____;
13、(4分)若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在矩形中,点,分别在边,上,且.
(1)求证:四边形是平行四边形.
(2)若四边形是菱形,,,求菱形的周长.
15、(8分)某学校要对如图所示的一块地进行绿化,已知,,,,,求这块地的面积.
16、(8分)已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.
(1)求BC边的长;
(2)当△ABP为直角三角形时,求t的值;
(3)当△ABP为等腰三角形时,求t的值
17、(10分)(1);(2)÷
18、(10分)关于x的方程:-=1.
(1)当a=3时,求这个方程的解;
(2)若这个方程有增根,求a的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线将图形分成面积相等的两部分,则直线的函数关系式为______________.
20、(4分)关于x的分式方程有增根,则a=_____.
21、(4分)如图,平行四边形ABCD内的一点E到边AD,AB,BC的距离相等,则∠AEB的度数等于____.
22、(4分)已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.
23、(4分)用换元法解方程时,如果设,那么得到关于的整式方程为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)解决问题.
学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.
(1)求A,B两种型号足球的销售价格各是多少元/个?
(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?
25、(10分)如图,在平面直角坐标系中,O 为坐标原点,P、Q 是反比例函数(x>0)图象上的两点,过点 P、Q 分别作直线且与 x、y 轴分别交于点 A、B和点 M、N.已知点 P 为线段 AB 的中点.
(1)求△AOB 的面积(结果用含 a 的代数式表示);
(2)当点 Q 为线段 MN 的中点时,小菲同学连结 AN,MB 后发现此时直线 AN 与直线MB 平行,问小菲同学发现的结论正确吗?为什么?
26、(12分)某个体户购进一批时令水果,20天销售完毕,他将本次的销售情况进行了跟踪记录,根据所记录的数据绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲,销售单价P(元/千克)与销售时间x(天)之间的关系如图乙.
(1)求y与x之间的函数关系式.
(2)分别求第10天和第15天的销售金额.
(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
过F作FQ⊥BC于Q,根据等边三角形的性质和判定和正方形的性质求出BE=2,∠BED=60°,∠DEF=90°,EF=2,求出∠FEQ,求出CE和FQ,即可求出答案.
【详解】
过F作FQ⊥BC于Q,则∠FQE=90°.
∵△ABC是等边三角形,AB=6,∴BC=AB=6,∠B=60°.
∵BD=BE,DE=2,∴△BED是等边三角形,且边长为2,∴BE=DE=2,∠BED=60°,∴CE=BC﹣BE=1.
∵四边形DEFG是正方形,DE=2,∴EF=DE=2,∠DEF=90°,∴∠FEC=180°﹣60°﹣90°=30°,∴QFEF=1,∴△EFC的面积为CE•FQ1×1=2.
故选C.
本题考查了等边三角形的性质和判定、正方形的性质等知识点,能求出CE和FQ的长度是解答此题的关键.
2、B
【解析】
解:∵乙的11次射击成绩不都一样,∴a≠1.∵乙是成绩最稳定的选手,∴乙的方差最小,∴a的值可能是1.121.故选B.
3、B
【解析】
根据众数和中位数的定义解答即可.
【详解】
解:15岁的队员最多,是8人,所以众数是15岁,20人中按照年龄从小到大排列,第10、11两人的年龄都是14岁,所以中位数是14岁.
故选B.
本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
4、A
【解析】
众数是在一组数据中,出现次数最多的数据;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)
【详解】
这组数据中,出现次数最多的是2400元,故这组数据的众数为2400元.
将这组数据重新排序为2000,2200,2200,2200,2400,2400,2400,2400,2600,2600,∴中位数是按从小到大排列后第5,6个数的平均数,为:2400元.
故选A.
5、D
【解析】
根据正方形的边长即可求出AB=BC=CD=DA=1,然后结合图象可知点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,再根据点P运动的位置逐一分析,用排除法即可得出结论.
【详解】
解:∵正方形ABCD的边长为1,
∴AB=BC=CD=DA=1
由图象可知:点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,
∴当点P从A到B运动时,即0<S≤1时,点P的纵坐标逐渐减小,故可排除选项A;当点P到点B时,即当S=1时,点P的纵坐标y=1,故可排除选项B;当点P从B到C运动时,即1<S≤2时,点P的纵坐标y恒等于1,故可排除C;当点P从C到D运动时,即2<S≤3时,点P的纵坐标逐渐增大;当点P从D到A运动时,即3<S≤4时,点P的纵坐标y恒等于2,
故选D.
此题考查的是根据图形上的点的运动,找出对应的图象,掌握横坐标、纵坐标的实际意义和根据点的不同位置逐一分析是解决此题的关键.
6、B
【解析】
先证明四边形ABED为平行四边形,再利用平行四边形的性质进行计算即可.
【详解】
∵,,
∴四边形ABED为平行四边形,
∴AD=BE=1,
又∵BC=4,
∴CE=BC-BE=4-1=1.
故选:B.
本题考查平行四边形的判定与性质,需熟记判定定理及性质.
7、A
【解析】
根据公因式定义,对各选项整理然后即可选出有公因式的项.
【详解】
解:,,
与多项式的公因式是,
故选:A.
此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“”.
8、D
【解析】
根据三角形中位线定理分别求出DE、EF、DF,计算即可.
【详解】
∵点D,E分别AB、BC的中点,
∴DE=AC=3.5,
同理,DF=BC=3,EF=AB=2.5,
∴△DEF的周长=DE+EF+DF=9,
故选D.
本题考查的是三角形中位线定理,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3,4,5 6,8,10
【解析】
根据勾股数的定义即可得出答案.
【详解】
∵3、4、5是三个正整数,
且满足,
∴3、4、5是一组勾股数;
同理,6、8、10也是一组勾股数.
故答案为:①3,4,5;②6,8,10.
本题考查了勾股数.解题的关键在于要判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.
10、y=2x-1
【解析】
可设这个一次函数解析式为:,把代入即可.
【详解】
设这个一次函数解析式为:,
把代入得,
这个一次函数解析式为:不唯一.
一次函数的解析式有k,b两个未知数当只告诉一个点时,可设k,b中有一个已知数,然后把点的坐标代入即可.
11、
【解析】
根据第一次A、B、C各取出部分混合后的浓度得到一条关于xyz的等式,再算出混合液倒回后A、B、C中后各自的酒精量,然后根据第二次混合再得到一条关于xyz的等式,联立组成方程组,使用x、y表示z,根据x、y、z的取值范围确定其准确整数值即可求解.
【详解】
解:A瓶倒出10%:2000×10%=200(克),剩余:2000-200=1800(克),
B瓶倒出20%:3000×20%=600(克),剩余:3000-600=2400(克),
C瓶倒出24%:5000×24%=1200(克),剩余:5000-1200=3800(克),
根据题意得:(200×x%+600×y%+1200×z%)÷(200+600+1200)=33.5%,
混合液倒回后A瓶内的酒精量:1800×x%+200×33.5%,
混合液倒回后B瓶内的酒精量:2400×y%+600×33.5%,
混合液倒回后C瓶内的酒精量:3800×z%+1200×33.5%,
再根据题意可得:
[(1800×x%+200×33.5%)×30%+(2400×y%+600×33.5%)×30%+(3800×z%+1200×33.5%)×30%]÷(2000×30%+3000×30%+5000×30%)=31.5%,
整理组成方程组得: ,
解得: ,
∵,,
∴,又∵且为整数,
则,
代入可得:,或者或者,
∵x、y、z均为整数,则只有符合题意,
则把起初A、B两瓶酒精混合后的浓度为:,
故答案为:.
本题考查从题意提取信息列方程组的能力,也考查三元一次方程组得解法,准确得出x、y和z之间的关系式再代入范围求解,舍去不符合题意的解为解题的关键.
12、1
【解析】
方程两边都乘以最简公分母(x –1),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出a的值.
【详解】
解:方程两边都乘(x﹣1),得
1-ax+3x=3x﹣3,
∵原方程有增根
∴最简公分母x﹣1=0,即增根为x=1,
把x=1代入整式方程,得a=1.
此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.方程的增根不适合原方程,但适合去分母后的整式方程,这是求字母系数的重要思想方法.
13、(-1,3)
【解析】
直线y=-2x+b可以变成:2x+y=b,直线y=x-a可以变成:x-y=a,
∴两直线的交点即为方程组的解,
故交点坐标为(-1,3).
故答案为(-1,3).
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)20.
【解析】
(1)由矩形的性质得出,,,证出,即可得出四边形是平行四边形.
(2)由菱形的性质得出,,设,则,在中,由勾股定理得出方程,解方程即可.
【详解】
(1)证明:四边形是矩形,
,,,
,
,
四边形是平行四边形.
(2)四边形是菱形,
,,
设,则,
在中,由勾股定理得:,
解得:,
,
菱形的周长.
此题考查了菱形的性质、矩形的性质、平行四边形的判定以及勾股定理.此题难度不大,注意掌握数形结合思想的应用.
15、24m2.
【解析】
连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ABC是直角三角形,
根据△ABC的面积减去△ACD的面积就是所求的面积.
【详解】
解:连接
∵∴
在中,根据勾股定理
在中,
∵
是直角三角形
∴.
本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC是直角三角形是解题的关键.同时考查了直角三角形的面积公式.
16、【解析】
试题分析:(1)直接根据勾股定理求出BC的长度;
(2)当△ABP为直角三角形时,分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可;
(3)当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.
试题解析:(1)在Rt△ABC中,BC2=AB2-AC2=52-32=16,
∴BC=4(cm);
(2)由题意知BP=tcm,
①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;
②当∠BAP为直角时,BP=tcm,CP=(t-4)cm,AC=3cm,
在Rt△ACP中,
AP2=32+(t-4)2,
在Rt△BAP中,AB2+AP2=BP2,
即:52+[32+(t-4)2]=t2,
解得:t=,
故当△ABP为直角三角形时,t=4或t=;
(3)①当AB=BP时,t=5;
②当AB=AP时,BP=2BC=8cm,t=8;
③当BP=AP时,AP=BP=tcm,CP=|t-4|cm,AC=3cm,
在Rt△ACP中,AP2=AC2+CP2,
所以t2=32+(t-4)2,
解得:t=,
综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.
考点:勾股定理
17、 (1) -45;(2) 2+4.
【解析】
(1) 利用二次根式的乘法运算法则化简求出即可;(2) 利用二次根式的除法运算法则化简求出即可.
【详解】
(1) = =-18×=-45;
(2) ÷=(20-18+4)÷
=()÷ =2+4.
本题考查了二次根式的混合运算,正确化简二次根式是解题的关键.
18、(1)x=-2;(2)a=-3.
【解析】
(1)将a=3代入,求解-=1的根,验根即可,
(2)先求出增根是x=1,将分式化简为ax+1+2=x-1,代入x=1即可求出a的值.
【详解】
解:(1)当a=3时,原方程为-=1,
方程两边同乘x-1,得3x+1+2=x-1,
解这个整式方程得x=-2,
检验:将x=-2代入x-1=-2-1=-3≠0,
∴x=-2是原分式方程的解.
(2)方程两边同乘x-1,得ax+1+2=x-1,
若原方程有增根,则x-1=0,解得x=1,
将x=1代入整式方程得a+1+2=0,解得a=-3.
本题考查解分式方程,属于简单题,对分式方程的结果进行验根是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.
【详解】
设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C
∴OB=3
∵经过原点的直线将图形分成面积相等的两部分
∴直线上方面积分是4
∴三角形ABO的面积是5
∴
∴
∴直线经过点
设直线l为
则
∴直线的函数关系式为
本题考查了一次函数,难点在于利用已知条件中的面积关系,熟练掌握一次函数相关知识点是解题关键.
20、a=-1
【解析】
根据分式方程的解法求出方程的解,然后根据方程有增根,则x=-5,从而得出a的值.
【详解】
去分母可得:1+a=x+5, 解得:x=a-2, ∵分式方程有增根, ∴x=-5,即a-2=-5,
解得:a=-1.
本题主要考查的是分式方程的解得情况,属于中等难度的题型.分式方程有增根是因为整式方程的解会使得分式的分母为零.
21、90°
【解析】
点E到边AD,AB,BC的距离相等,可知可知AE、BE分别为∠DAB、∠ABC的角平分线,然后根据角平分线的定义及三角形内角和求解即可.
【详解】
依题意,可知AE、BE分别为∠DAB、∠ABC的角平分线,
又AD∥BC,
所以,∠DAB+∠CBA=180°,
所以,∠DAB+∠CBA=90°,
即∠EAB+∠EBA=90°,
所以,∠AEB=90°.
故答案为:90°.
本题考查了角平分线的判定,平行四边形的性质,三角形内角和等知识,证明AE、BE分别为∠DAB、∠ABC的角平分线是解答本题的关键.
22、x1<x1
【解析】
由k=-1-a1,可得y随着x的增大而减小,由于1>-1, 所以x1<x1.
【详解】
∵y=(-1-a1)x+1,k=-1-a1<0,
∴y随着x的增大而减小,
∵1>-1,
∴x1<x1.
故答案为:x1<x1
本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.
23、
【解析】
将分式方程中的换,则=,代入后去分母即可得到结果.
【详解】
解:根据题意得:,
去分母得:.
故答案为:.
此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.
二、解答题(本大题共3个小题,共30分)
24、(1)A,B两种型号足球的销售价格各是50元/个,90元/个.(2)见解析
【解析】
试题分析:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元列出方程组解答即可;
(2)设购买A型号足球x个,则B型号足球(20﹣x)个,根据费用不低于1300元,不超过1500元,列出不等式组解答即可.
解:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由题意得
解得
答:A,B两种型号足球的销售价格各是50元/个,90元/个.
(2)设购买A型号足球x个,则B型号足球(20﹣x)个,由题意得
,
解得7.5≤x≤12.5
∵x是整数,
∴x=8、9、10、11、12,
有5种购球方案:
购买A型号足球8个,B型号足球12个;
购买A型号足球9个,B型号足球11个;
购买A型号足球10个,B型号足球10个;
购买A型号足球11个,B型号足球9个;
购买A型号足球12个,B型号足球8个.
25、(1)S=2a+2;(2)正确,理由见解析
【解析】
(1)过点P作PP⊥x轴,PP ⊥y轴,由P为线段AB的中点,可知PP,PP是△AOB的中位线,故OA=2PP,OB=2PP,再由点P是反比例函数y=(x>0)图象上的点,可知S = OA×OB=×2PP×2PP=2PP×PP=2a+2;
(2)由点Q为线段MN的中点,可知同(1)可得S=S =2a+2,故可得出OA•OB=OM•ON,即 ,由相似三角形的判定定理可知△AON∽△MOB,故∠OAN=∠OMB,由此即可得出结论.
【详解】
(1)过点P作PP⊥x轴,PP⊥y轴,
∵P为线段AB的中点,
∴PP,PP是△AOB的中位线,
∴OA=2PP,OB=2PP,
∵点P是反比例函数y= (x>0)图象上的点,
∴S =OA×OB=×2PP×2PP=2PP×PP=2a+2;
(2)结论正确.
理由:∵点Q为线段MN的中点,
∴同(1)可得S=S =2a+2,
∴OA⋅OB=OM⋅ON,
∴,
∵∠AON=∠MOB,
∴△AON∽△MOB,
∴∠OAN=∠OMB,
∴AN∥MB.
此题考查反比例函数综合题,解题关键在于作辅助线
26、 (1)当;(2)第10天:200元,第15天:270元;(3)最佳销售期有5天,最高为9.6元.
【解析】
(1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;
(2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额.
(3)日销售量不低于1千克,即y≥1.先解不等式2x≥1,得x≥12,再解不等式﹣6x+120≥1,得x≤16,则求出“最佳销售期”共有5天;然后根据.(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值.
【详解】
解:(1)①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,
∵直线y=k1x过点(15,30),∴15k1=30,解得k1=2.
∴y=2x(0≤x≤15);
②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,
∵点(15,30),(20,0)在y=k2x+b的图象上,
∴,解得:.
∴y=﹣6x+120(15<x≤20).
综上所述,可知y与x之间的函数关系式为:.
.
(2)∵第10天和第15天在第10天和第20天之间,
∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,
∵点(10,10),(20,8)在z=mx+n的图象上,,
解得:.
∴.
当x=10时,,y=2×10=20,销售金额为:10×20=200(元);
当x=15时,,y=2×15=30,销售金额为:9×30=270(元).
故第10天和第15天的销售金额分别为200元,270元.
(3)若日销售量不低于1千克,则y≥1.
当0≤x≤15时,y=2x,
解不等式2x≥1,得x≥12;
当15<x≤20时,y=﹣6x+120,
解不等式﹣6x+120≥1,得x≤16.
∴12≤x≤16.
∴“最佳销售期”共有:16﹣12+1=5(天).
∵(10≤x≤20)中<0,∴p随x的增大而减小.
∴当12≤x≤16时,x取12时,p有最大值,此时=9.6(元/千克).
故此次销售过程中“最佳销售期”共有5天,在此期间销售单价最高为9.6元
考核知识点:一次函数在销售中的运用.要注意理解题意,分类讨论情况.
题号
一
二
三
四
五
总分
得分
选手
甲
乙
丙
平均数
9.3
9.3
9.3
方差
0.026
a
0.032
工资(元)
2000
2200
2400
2600
人数(人)
1
3
4
2
相关试卷
这是一份河北省保定市二中学分校2024-2025学年九上数学开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年上海民办日日学校九上数学开学学业水平测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河北省秦皇岛市九上数学开学学业水平测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。