河北省邢台市临西一中学普通班2025届九上数学开学经典模拟试题【含答案】
展开
这是一份河北省邢台市临西一中学普通班2025届九上数学开学经典模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知四边形ABCD是平行四边形,下列结论不正确的是( )
A.AD=BCB.AC⊥BDC.∠DAC=∠BCAD.OA=OC
2、(4分)如图,在正方形ABCD中,点E,F分别在CD,BC上,且AF=BE,BE与AF相交于点G,则下列结论中错误的是( )
A.BF=CEB.∠DAF=∠BEC
C.AF⊥BED.∠AFB+∠BEC=90°
3、(4分)在,,,,,中分式的个数有( )
A.2个B.3个C.4个D.5个
4、(4分)关于一次函数,下列结论正确的是
A.图象经过B.图象经过第一、二、三象限
C.y随x的增大而增大D.图象与y轴交于点
5、(4分)下列选择中,是直角三角形的三边长的是( )
A.1,2,3B.2,5,3C.3,4,5D.4,5,6
6、(4分)如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是( )
A.3B.4
C.5D.6
7、(4分)若x-,则x-y的值为( )
A.2B.1C.0D.-1
8、(4分)如图,四边形中,,,于,于,若,的面积为,则四边形的边长的长为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知中,,角平分线BE、CF交于点O,则 ______ .
10、(4分)如图,正方形的边长是,的平分线交于点,若点分别是和上的动点,则的最小值是_______.
11、(4分)已知:一组邻边分别为和的平行四边形,和的平分线分别交所在直线于点,,则线段的长为________.
12、(4分)若,则=______
13、(4分)如图,点D是等边内部一点,,,.则的度数为=________°.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,B、D分别在轴负半轴、轴正半轴上,点E是轴的一个动点,连接CE,以CE为边,在直线CE的右侧作正方形CEFG.
(1)如图1,当点E与点O重合时,请直接写出点F的坐标为_______,点G的坐标为_______.
(2)如图2,若点E在线段OD上,且OE=1,求正方形CEFG的面积.
(3)当点E在轴上移动时,点F是否在某条直线上运动?如果是,请求出相应直线的表达式;如果不是,请说明理由.
15、(8分)直线与轴、轴分別交于、两点,是的中点,是线段上一点.
(1)求点、的坐标;
(2)若四边形是菱形,如图1,求的面积;
(3)若四边形是平行四边形,如图2,设点的横坐标为,的面积为,求关于的函数关系式.
16、(8分)如图,点在等边三角形的边上,将绕点旋转,使得旋转后点的对应点为点,点的对应点为点,请完成下列问题:
(1)画出旋转后的图形;
(2)判断与的位置关系并说明理由.
17、(10分)如图,在中,AD是BC边上的中线,点E是AD的中点,过点A作交BE的延长线于F,BF交AC于G,连接CF.
求证:≌;
若,试判断四边形ADCF的形状,并证明你的结论;
求证:.
18、(10分)解不等式组.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为,,,,则成绩最稳定的是______.
20、(4分)请写出一个比2小的无理数是___.
21、(4分)如图,在正方形ABCD中,以A为顶点作等边三角形AEF,交BC边于点E,交DC边于点F,若△AEF的边长为2,则图中阴影部分的面积为_____.
22、(4分)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.
23、(4分)如图,是的斜边上的中线,,在上找一点,使得,连结并延长至,使得,连结,,则长为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.
(1)求每分钟向储存罐内注入的水泥量.
(2)当3≤x≤5.5时,求y与x之间的函数关系式.
(3)储存罐每分钟向运输车输出的水泥量是 立方米,从打开输入口到关闭输出口共用的时间为 分钟.
25、(10分)又到一年丰收季,重庆外国语学校“国内中考、高考、国内保送、出国留学”捷报频传.作为准初三的初二年级学生希望抓紧暑期更好的提升自我.张同学采用随机抽样的方式对初二年级学生此次暑期生活的主要计划进行了问卷调查,并将调查结果按照“A社会实践类、B学习提高类、C游艺娱乐类、D其他”进行了分类统计,并绘制了如图1和如图2两幅不完整的统计图.(接受调查的每名同学只能在四类中选择其中一种类型,不可多选或不选.)请根据图中提供的信息完成以下问题.
(1)扇形统计图中表示B类的扇形的圆心角是 度,并补全条形统计图;
(2)张同学已从被调查的同学中确定了甲、乙、丙、丁四名同学进行开学后的经验交流,并计划在这四人中选出两人的宝贵经验刊登在本班班刊上.请利用画树状图或列表的方法求出甲同学的经验刊登在班刊上的概率.
26、(12分)任丘市举办一场中学生乒乓球比赛,比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分费用与参加比赛的人数(x)人成正比.当x=20时,y=1600;当x=30时,y=1.
(1)求y与x之间的函数关系式;
(2)如果承办此次比赛的组委会共筹集;经费6350元,那么这次比赛最多可邀请多少名运动员参赛?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平行四边形的性质即可一一判断.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC,OA=OC,AD∥BC,
∴∠DAC=∠BCA,
故A、C、D正确,
无法判断AC与DB是否垂直,故B错误;
故选:B.
本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质,属于中考基础题.
2、D
【解析】
根据正方形的性质可得∠FBA=∠BCE=90°、AB=BC,结合BF=CE可用“SAS”得到△ABF≌△BCE,从而可对A进行判断;
由全等三角形的性质可得∠BAF=∠CBE,结合等角的余角相等即可对B进行判断;
由直角三角形的两个锐角互余可得∠BAF+∠AFB=90°,结合全等三角形的性质等量代换可得∠CBE+∠AFB=90°,从而可得到∠BGF的度数,据此对C进行判断;
对于D,由全等三角形的性质可知∠AFB=∠BEC,因此∠AFB=∠BEC=45°时D正确,分析能否得到∠AFB=45°即可对其进行判断.
【详解】
∵四边形ABCD为正方形,
∴∠FBA=∠BCE=90°,AB=BC,
又∵AF=BE,
∴△ABF≌△BCE,
∴BF=CE,∠BAF=∠CBE.
故A正确;
∵∠C=90°,
∴∠CBE+∠BEC=90°.
∵∠BAD=∠BAF+∠DAF=90°,∠BAF=∠CBE,
∴∠DAF=∠BEC,故B正确.
∵∠BAF=∠CBE,∠BAF+∠AFB=90°,
∴∠CBE+∠AFB=90°,
∴∠BGF=90°,
∴AG⊥BE,故C正确.
∵△ABF≌△BCE,
∴∠AFB=∠BEC.
又∵点F在BC上,
∴∠AFB≠45°,
∴∠AFB+∠BEC≠90°,故D错误;
故选D.
本题考察了正方形的四个角都是直角,四条边相等,全等三角形的判定(SAS),全等三角形的性质,同角(等角)的余角相等,牢牢掌握这些知识点是解答本题的关键.
3、B
【解析】
根据分式的定义进行判断;
【详解】
,,,,中分式有:,,共计3个.
故选:B.
考查了分式的定义,解题关键抓住分式中分母含有字母.
4、D
【解析】
根据一次函数的性质,依次分析各个选项,选出正确的选项即可.
【详解】
A.把x=3代入y=﹣2x+3得:y=﹣6+3=﹣3,即A选项错误;
B.一次函数y=﹣2x+3的图象经过第一、二、四象限,即B选项错误;
C.一次函数y=﹣2x+3的图象上的点y随x的增大而减小,即C选项错误;
D.把x=0代入y=﹣2x+3得:y=3,图象与y轴交于点(0,3),即D选项正确.
故选D.
本题考查了一次函数图象上点的坐标特征和一次函数的性质,正确掌握一次函数的性质是解题的关键.
5、C
【解析】
根据勾股定理的逆定理,逐一判断选项,即可得到答案.
【详解】
∵12+22≠32,
∴1,2,3不是直角三角形的三边长,
∴A不符合题意,
∵22+32≠52,
∴2,5,3不是直角三角形的三边长,
∴B不符合题意,
∵32+42=52,
∴3,4,5是直角三角形的三边长,
∴C符合题意,
∵42+52≠62,
∴4,5,6不是直角三角形的三边长,
∴D不符合题意.
故选C.
本题主要考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.
6、D
【解析】
过点D作DH⊥OB于点H,如图,根据角平分线的性质可得DH=DP=4,再根据三角形的面积即可求出结果.
【详解】
解:过点D作DH⊥OB于点H,如图,
∵OC是∠AOB的角平分线,DP⊥OA,DH⊥OB,
∴DH=DP=4,
∴△ODQ的面积=.
故选:D.
本题主要考查了角平分线的性质,属于基本题型,熟练掌握角平分线的性质定理是解题关键.
7、B
【解析】
直接利用二次根式的性质得出y的值,进而得出答案.
【详解】
解:∵与都有意义,
∴y=0,
∴x=1,
故选x-y=1-0=1.
故选:B.
此题考查二次根式有意义的条件,正确把握二次根式的定义是解题关键.
8、A
【解析】
先证明△ACD≌△BEA,在根据△ABC的面积为8,求出BE,然后根据勾股定理即可求出AB.
【详解】
解:∵BE⊥AC,CD⊥AC,
∴∠ACD=∠BEA=90°,
∴∠CDB+∠DCA=90°,
又∵∠DAB=∠DAC+∠BAC=90°
在△ACD和△AEB中,
∴△ACD≌△BEA(AAS)
∴AC=BE
∵△ABC的面积为8,
∴,
解得BE=4,
在Rt△ABE中,
.
故选择:A.
本题主要考查了三角形全等和勾股定理的知识点,熟练三角形全等的判定和勾股定理是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
解:∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°﹣45°=135°.故答案为:135°.
点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.
10、
【解析】
过D作AE的垂线交AE于F,交AC于D′,再过D′作D′P′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.
【详解】
解:解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,
∵DD′⊥AE,
∴∠AFD=∠AFD′,
∵AF=AF,∠DAE=∠CAE,
∴△DAF≌△D′AF,
∴D′是D关于AE的对称点,AD′=AD=5,
∴D′P′即为DQ+PQ的最小值,
∵四边形ABCD是正方形,
∴∠DAD′=45°,
∴AP′=P′D′,
∴在Rt△AP′D′中,
P′D′2+AP′2=AD′2,AD′2=25,
∵AP′=P′D',
2P′D′2=AD′2,即2P′D′2=25,
,即DQ+PQ的最小值为.
本题考查了轴对称-最短路线问题、勾股定理、作图与基本作图等知识点的应用,解此题的关键是根据轴对称的性质找出P'点,题型较好,难度较大.
11、或
【解析】
利用当AB=10cm,AD=6cm,由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长
【详解】
解:如图1,当AB=10cm,AD=6cm
∵AE平分∠BAD
∴∠BAE=∠DAE,
又∵AD∥CB
∴∠EAB=∠DEA,
∴∠DAE=∠AED,则AD=DE=6cm
同理可得:CF=CB=6cm
∵EF=DE+CF-DC=6+6-10=2(cm)
如图2,当AD=10cm,AB=6cm,
∵AE平分∠BAD,
∴∠BAE=∠DAE
又∵AD∥CB
∴∠EAB=∠DEA,
∴∠DAE=∠AED则AD=DE=10cm
同理可得,CF=CB=10cm EF=DE+CF-DC=10+10-6=14(cm)
故答案为:2或14.
图1 图2
本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.
12、
【解析】
设=k,同x=2k,y=4k,z=5k,再代入中化简即可.
【详解】
设=k,
x=2k,y=4k,z=5k
=.
故答案是:.
考查的是分式化简问题,利用比例性质通过设未知数的方式,代入分式化简可以求解.
13、1
【解析】
将△BCD绕点B逆时针旋转60°得到△ABD',根据已知条件可以得到△BDD'是等边三角形,△ADD'是直角三角形,即可求解.
【详解】
将△BCD绕点B逆时针旋转60°得到△ABD',
∴BD=BD',AD'=CD,
∴∠DBD'=60°,
∴△BDD'是等边三角形,
∴∠BDD'=60°,
∵BD=1,DC=2,AD=,
∴DD'=1,AD'=2,
在△ADD'中,AD'2=AD2+DD'2,
∴∠ADD'=90°,
∴∠ADB=60°+90°=1°,
故答案为1.
本题考查旋转的性质,等边三角形和直角三角形的性质;能够通过图形的旋转构造等边三角形和直角三角形是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)(2) (3)是, 理由见解析.
【解析】
(1)利用四边形OBCD是边长为4的正方形,正方形CEFG,的性质可得答案,
(2)利用勾股定理求解的长,可得面积,
(3)分两种情况讨论,利用正方形与三角形的全等的性质,得到的坐标,根据坐标得到答案.
【详解】
解:(1) 四边形OBCD是边长为4的正方形,
正方形CEFG,
三点共线,
故答案为:
(2)由
正方形CEFG的面积
(3)如图,当在的左边时,作于,
正方形CEFG ,
四边形OBCD是边长为4的正方形,
在与中,
设
①+②得:
在直线上,
当在的右边时,同理可得:在直线上.
综上:当点E在轴上移动时,点F是在直线上运动.
本题考查的是正方形的性质,三角形的全等的判定与性质,勾股定理的应用,点的移动轨迹问题,即点在一次函数的图像上移动,掌握以上知识是解题的关键.
15、(1),;(2);(3)当时, ;当 时,
【解析】
(1)当x=0时,y=4,当y=0时,x=4,即可求点A,点B坐标;
(2)过点D作DH⊥BC于点H,由锐角三角函数可求∠ABO=60°,由菱形的性质可得OC=OD=DE=2,可证△BCD是等边三角形,可得BD=2,可求点D坐标,即可求△AOE的面积;
(3)分两种情况讨论,利用平行四边形的性质和三角形面积公式可求解.
【详解】
解:(1)∵直线y=-x+4与x轴、y轴分别交于A、B两点,
∴当x=0时,y=4,
当y=0时,x=4
∴点A(4,0),点B(0,4)
(2)如图1,过点D作DH⊥BC于点H,
,
∴tan∠ABO=
为的中点,四边形为菱形,
为等边三角形
∴BD=2
∵DH⊥BC,∠ABO=60°
∴BH=1,HD=BH=
∴当x=时,y=3
∴D(,3)
∴S△AOE=×4×(3-2)=2
(3)由是线段上一点,设
四边形是平行四边形
当,即时
当,即时
本题是一次函数综合题,考查了一次函数的应用,菱形的性质,平行四边形的性质,利用分类讨论思想解决问题是本题的关键.
16、 (1)见解析;(2)AB//CE,理由见解析.
【解析】
(1)直接利用旋转的性质得出对应点位置进而得出答案;
(2)根据“同旁内角互补,两直线平行”进行证明即可.
【详解】
(1)旋转后的图形如下:
①作
②截取
③连接
(2)与的位置关系是平行,
理由:由等边三角形得:
由于绕点旋转到
∴
∴即
∴
此题主要考查了旋转变换以及平行线的判定,正确应用等边三角形的性质是解题关键.
17、(1)详见解析;(2)四边形ADCF是菱形,理由详见解析;(3)详见解析
【解析】
由“AAS”可证≌;
由全等三角形的性质可得,可证四边形ADCF是平行四边形,由直角三角形的性质可得,可证四边形ADCF是菱形;
通过证明∽,可得,即可得结论.
【详解】
证明:,
,
在和中,
≌;
解:四边形ADCF是菱形,
理由如下:≌,
,
,
,又,
四边形ADCF是平行四边形,
,AD是BC边上的中线,
,
四边形ADCF是菱形;
∽
本题考查四边形综合题,菱形的判定,全等三角形的判定和性质,相似三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.
18、
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.
【详解】
解:
由(1)得:
由(2)得:,
所以,原不等式组的解为:
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、甲
【解析】
根据题目中的四个方差,可以比较它们的大小,由方差越小越稳定可以解答本题.
【详解】
解:∵0.57<0.59<0.62<0.67,
∴成绩最稳定的是甲,
故答案为:甲
本题考查数据的波动。解答本题的关键是明确方差越小越稳定.
20、(答案不唯一).
【解析】
根据无理数的定义写出一个即可.
【详解】
解:比2小的无理数是,
故答案为:(答案不唯一).
本题考查了无理数的定义,能熟记无理数是指无限不循环小数是解此题的关键,此题是一道开放型的题目,答案不唯一.
21、1
【解析】
先根据直角边和斜边相等,证出△ABE≌△ADF,从而得CE=CF,继而在△ECF利用勾股定理求出CE、CF长,再利用三角形的面积公式进行求解即可.
【详解】
∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠C=∠D=90°,
∵△AEF是等边三角形,
∴AE=EF=AF=2,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∴EC=CF,
又∵∠C=90°,
∴CE2+CF2=EF2=22,
∴CE=CF=,
∴S△ECF==1,
故答案为:1.
本题考查了正方形的性质,等边三角形性质,勾股定理,三角形的面积等知识,熟练掌握和灵活运用相关知识是解题的关键.
22、1.
【解析】
∵AB=5,AD=12,
∴根据矩形的性质和勾股定理,得AC=13.
∵BO为Rt△ABC斜边上的中线
∴BO=6.5
∵O是AC的中点,M是AD的中点,
∴OM是△ACD的中位线
∴OM=2.5
∴四边形ABOM的周长为:6.5+2.5+6+5=1
故答案为1
23、1
【解析】
根据直角三角形的性质求出DE,根据三角形中位线定理计算即可.
【详解】
解:∵DE是Rt△ABD的斜边AB上的中线,AB=12,
∴DE=AB=6,
∴EF=DE-DF=6-2=4,
∵AF=CF,AE=EB,
∴EF是三角形ABC的中位线,
∴BC=2EF=1,
故答案为:1.
本题考查的是直角三角形的性质、三角形中位线定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)5立方米;(2)y=4x+3;(3)1,11.
【解析】
【分析】(1)用体积变化量除以时间变化量即可求出注入速度;
(2)根据题目数据利用待定系数法求解;
(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.
【详解】(1)每分钟向储存罐内注入的水泥量为15÷3=5立方米;
(2)设y=kx+b(k≠0),把(3,15)(5.5,25)代入,则有
,解得:,
∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3;
(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;
只打开输出口前,水泥输出量为5.5﹣3=2.5立方米,之后达到总量8立方米需输出8﹣2.5=5.5立方米,用时5.5分钟
∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟,
故答案为1,11.
【点睛】本题考查了一次函数的应用,解题的关键是读懂图象、弄清题意、熟练应用一次函数的图象和性质以及在实际问题中比例系数k代表的意义.
25、(1)144(2)
【解析】
(1)先根据A类型人数及其所占百分比求得总人数,继而根据各类型人数之和等于总人数求得B的人数,再用360°乘以B类型人数所占比例可得;
(2)列表得出所有等可能结果,从中找打符合条件的结果数,再利用概率公式可得答案.
【详解】
解:(1)∵被调查的人数为45÷30%=150人,
∴B等级人数为150﹣(45+15+30)=60人,
则扇形统计图中表示B类的扇形的圆心角是360°×=144°,
补全图形如下:
故答案为144;
(2)列表如下:
由树状图(或表格)可知,所有等可能的结果共12种,其中包含甲同学的有6种,
所以P(甲同学的经验刊登在班刊上的概率)=.
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.
26、 (1) 函数的解析式是:y=40x+800;(2) 这次比赛最多可邀请138名运动员.
【解析】
(1)根据叙述即可得到y与x之间的关系是一次函数关系,可以利用待定系数法求解;(2)在(1)求得的函数解析式中,令y=6350,即可求得x的值.
【详解】
解:(1)设y=kx+b,根据题意得:
解得:
则函数的解析式是:y=40x+800
(2)在y=40x+800中y=6350
解得:x=138
则这次比赛最多可邀请138名运动员.
本题考查待定系数法求一次函数解析式,解题关键是灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
题号
一
二
三
四
五
总分
得分
甲
乙
丙
丁
甲
(甲,乙)
(甲,丙)
(甲,丁)
乙
(乙,甲)
(乙,丙)
(乙,丁)
丙
(丙,甲)
(丙,乙)
(丙,丁)
丁
(丁,甲)
(丁,乙)
(丁,丙)
相关试卷
这是一份河北省邢台临西县联考2024-2025学年数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届河北省临西县九年级数学第一学期开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河北省邢台市临西一中学普通班2023-2024学年数学九上期末监测试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,如图,在中,,,,则等于,下列方程中,为一元二次方程的是等内容,欢迎下载使用。